&

(ACCESSION Nu?sm (THRU)
{PAGES) (CODE)

FACILITY FORM £02

GR AD NUNMBER) \CAIEGzY)

Northeastern University
360 Huntington Averue
Boston, Massachusetts

GPO PRICE S _

CFSTI PRICE(S) $

Contract lq,,&i‘l9(628)-331?

‘Task No. 461003
Microfiche (MF)

s

Scientific Report No. b (853 July 65

June 1966

Charles F. Hobbs, CRBK

Distribution of this document is unlimited

This research was supported in part by the Rational Aeromautics aa:é
Space Administration under Grant NGR~22-011-013 :

Prepared
for

ATR FORCE CAMBRIDGE FESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETES

;
1
i
3

Hard copy (HC) __::C_&_a_- |



|
) AFCRL-66-471 !
!
i

"On Iinear Product Codes and Their Duals”
by
Lih-Jyh Weng

Northeastern University
360 Huntington Avenue
Boston, Massachusetts

Contract No. AF19(628)-3312
‘Project No. 4610

Task No. 461003

Scientific Report No. 4

June 1966
Charles F. Hobbs, CRBK

Distribution of this document is unlimited

This research was supported in part by the National Aeronautics and
Space Administration under Grant NGR-22-011-013

Prepared
for

ATR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS



ABSTRACT

In this report the value of studying the tensor product of linear
codes is demonstrated. The pertinent problems concerning these product
codes are outlined. Algebraic techniques for determining the null space
of a tensor ﬁro@uct space are developed. The understa;:d’iﬁg of the null
space of a prﬁuc:'t space is useful not only in the de;.'elmnt of this
report, but also for future research work. Decomposition of the procedure
and implementation of encoding and decoding of a product code into those
of its component codes are shown. In the case where the component codes
are cyclic, the product code has the special feature that its encoder
and syndrome calculator can be easily comverted to those of its dual
codes by programmed switching. A simplé"m:foding scheme ; namely,
permutation decoding, whicﬂ is capable of co?h;gting a large fraction
of all the correctable errors of a systematic cy;iig‘code, is investigated.
It is suggested that it be used either as a part of fﬂé,gorrection—
detection scheme or in combination with an auxiliary scheme ‘to\ attain full
error correction capability. ZFinally, the minimum distances of>prpduct
codes, and suitable commnication channels for employing such codes,'éxg

discﬁssed.
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CHAPTER 1

INTRODUCTION
Hemming !, Golay® and Slepian’’10 are the founders of linear algebraic

coding theory. Ever since the idea was brought up, the developments and

vancement of this area have progressed steadily. Among linear codes,
the cyclic code suggested by Prangell and a wide class discovered by
Bose and Ray-Chaudhuril®s13 and independently by Hocquenghem! are the
most important ones in the sense that the implementation is relatively
simple. Peterson® gives a unified treatment of algebraic coding theory.
His excellent text book benefits many newcomers who are interested in
this area. The recent research work in linear algebraic coding theory

can be roughly divided into the following five areas:

(1) To discover new codes which are particularly
suitable for a variety of commnication channels.

(i1) To form new and simple decoding procedures and
algorithms for the existing codes. For example,
new decoding procedures and algorithms for the
B-C-H codes have been discovered recently by
several authorsl’ »16,17,18,

(111i) To analyze the existing codes so that their
properties such as algebraic structure, error
control capability, comma-freedom and weight
distribution, etc. can be understood more

thoroughly.




(iv) mTo generate new recursive sequences which are
applicable to synchronization, ranging and
orbit determination purposes.

(v) To combine existing codes according to certain
algebraic rules to form a new compound code.
This will enlarge our vocabulary of codes to
suit special error-control capabilities required
by the user. Furthermore, it will perform some
special functions, such as error-locating, which
are otherwise impossible by means of a simple

component code alone.

Actually, there are no clear-cut ways to divide the above five
areas. To solve a problem in any one area usually requires the knowledge
of other areas. Sometimes one may even have to solve the problems in
other areas first before attacking the problem itself. Nevertheless,
the above division is adequate for the sake of convenience.

In order to fully understand and perform further research work in
the fifth area which is the main aim of this report, it is necessary
to have extensive knowledge of the other four areas. On the other
hand, a thorough understanding of the fifth area is helpful in
research work in all the other areas. The following shows some
interrelations between the fifth area and the other ones.

(1) and (v) The more new codes we know, the more
combined codes we will have. Conversely,
the combined codes stimulate resedrch

work in the first area with the purpose

-2~




(11) and (v)

(11i) and (v)

of inventing new competitive codes, or
designing component codes particularly

suited for combination.

So far the decoding schemes for most of

the existing codes are not immediately

feasible. It is more promising to implement
long and complex codes through a combination

of short and simple codes, because the decoding
Procedures for a combined code can be decomposed
into those of its omponent codes.

The relation between these two areas is
evident. The more we know about the properties
of the component codes, the more we understand
the combined code. The study of such properties
Presents many new challenging problems.
Furthermore, a thorough understanding of the
Properties of a combined code will help us
understand a class of equivalent codes.®

For example, the properties such as weight
distribution, minimum distance, etc. are

identical for two equivalent codes.

*The definition of an equivalent code is given in Chapter 2.




(iv) and (v) Presently, the maximum-length linear shift
registér sequences and their'cémbined versions
are studied for use in ranging and orbit
determination. Also the Barker sequencesa9
are used for synchronization of code words.

It is believed that the knowledge of combining
codes may be applicable to the combination of
these sequences to generate new sequences

which are more suitable for these purposes.

The tensor product is the algebralc rule adopted in this report for

combining linear codes. The tensor product code 1s the linear algebraic

code
(1) whose generator matrix is the tensor product of the
generator matrices of two known codes;
or (i1) whose parity-check matrix is the tensor product of

the parity-check matrices of two given codes.

In this chapter, the background of product codes will be briefly reviewed.
Next, the algebra of the tensor product of matrices is illustrated. Then
the definition and some properties of tensor product codes are given.
Finally, the salient problems in this area are stated and the contents

of the following chapters are introduced.

1.1 Historical Background

Elias® first studied the iterated codes. Calabl, HaefeliZC, Hobbs2l
and Khutzea extended the work of iterated codes. Slepianl introduced the

tensor product of generator matrices to represent the lterated codes.

-




Wolf and Elspas23 suggested the 1ldea of error-locating codes. Wolfzb”25
and Chang and Weng26 independently discovered that the error-locating
codes can be represented by a parity-check matrix which is a tensor
product of two parity-check matrices. Burton and Weldon=' found a

way to construct a cyclic code by permuting the c_:ode words of a product
code with cyclic component codes of relative prime lengths. Chang and
Weng28 initiated the study of dual product code which can be used as

variable redundancy codes with high fleiibility.

1.2 Algebra of Tensor Product of Matrices

The tensor product of matrices will be used extensively in this
report. It is desirable to give some fundamental rules for operation
with tensor products.

é
ILet the matrices A and B be given as follows

(811 @15 +e¢ 814
a2l a.22 ses 3'211

akl ak2 see a}m

bll b12 see blm—

bzl b% LR ban

(1.1)

(1.2)



where ajj and bjj are assumed, for the purpose of this report, as elements

of GF(q), q being power of a prime. . Then the tensor product of A and B

denoted by A®B is given as

a-llB a.]_gB se alnf

ap1B  appB ... appyB
A®B=]|-

ale a.k2B ees a’knB_

allbll X allblm so e all—lbll o0 alnbhn —-‘

B1bpy eee @by eee B by eee By D

. . .

L] . .

a’klbll a’klblm coe a’knbll a’knblm

. . 3

Laakl.bh'l v aklbhm co e aknbhl eos a'knbhm

(1.3)

Note that A is a k X n matrix and B an h X m matrix, and A @B

becomes a kh X nm matrix.

Some formal rules for operating with tensor products are

below for future use without proof.

ARO0O=0QB =0.

I ®Iy = Iy »

where Ik is a k X k identity matrix.

listed

(L.4)
(1.5)




(4 + A,)®B = (4; ®B) + (A, ®B). (1.6)
AR (By +Bp) = (A®B1) + (A®Bo). (1.7)
aA @ bB = ab(A X B). (1.8)
(Aa®3B)T = ATQET

where T denotes transpose.
(A185) @ (ByB,) = (4, ® By) (A, @ Bs)- (1.10)
(A®B)1=21@®351, (1.11)

providea A and B are nonsingular square matrices. The proofs of these

relations can be found in the literature.l?

1.3 Definition and Properties of Tensor Product Codes

The generator matrix of a linear code is the matrix whose row vectors
are the basis of the code space. The parity-check matrix of a linear
code is the matrix whose row space 1s the mull space of the code space.
There are two basic kinds of tensor product codes derivable from two
given component codes. The first one 1s the code whose generator matrix
is the tensor product of the generator matrices of its component codes.
The other code is defined by its parity-check matrix which is a tensor
product of the parity-check matrices of its component codes. The dual
code of a linear code is a code whose generator matrix is equal to the
parity-check matrix of the known code, or equivalently, whose parity-
check matrix is equal to the generator matrix of the known code. From

two component codes and their duals, eight product codes may be developed.

-7..




Therefore, 1t is an effective way of forming new codes from given codes.
In the case of cyclic codes, another definition of dual codes in terms
of the generator polynomials will be given in Chapter L.

Due to the fact that elther the generator matrix or the parity-check
matrix of a product code can be expressed as a tensor pi‘oduct of two
matrices, the entire code word block can be divided into subblocks each
of which has a length equal to that of the second component code. With
the subblock structure, the product codes can be understood somewhat
easier. Each subblock is controlled by the second component code while
the whole block is controlled by the first component code if each subblock
is interpreted as a digit of the first component code. A useful concept
of error control, the error-locating property, is a direct consequence
of this subblock structure. If s or fewer erroneous subblocks, each
having no more than t errors in any received code word, can be located ,'
the code is said to have the error-locating property (s,t).

For the case of product codes with cyclic comi)onent codes, it is
relatively simple to implement an encoder at the transmitting terminal
and a syndrome calculator at the receiving end with eight operating ‘
modes possessing various capabilities in error control. All the operating
modes have an identical code word length which is equal to the product
of the lengths of the two component codes. The amounts of redundancy
are, of course, all different for the eight modes. If the code word
length is allowed to vary, we can employ the same encoder and syndrome
calculator to operate 12 modes which include 8 product codes, 2 original
component codes and the duals of the component codes. This is a highly

flexible system and is particularly suitable for time-varying channels.

-8-




Another interesting property of the product code is that it 1s

possible to correct both random errors and burst errors.27

1.4 Problems to be Solved

Following is a list of pertinent problems concerning product codes.

(1) To find the mull space of a tensor product
space: this is d;ésiralble from the viewpoint
o:f obtaining a thorough mathematical understanding
of tensor product spaces, hence product codes.

The result should help one to visualize better the
structure of product codes.

(11) ILogic implementation: this is a practical problem.
It 1s desirable that the implementation of a product
code can be achieved by simple logic combinations of
the implementations..of 1ts component codes.

(111) study of product codes with cyclic component codes:
since the cyclic codes are the easiest ones to be
implemented, special attention should be given to
the product codes with cyclic components.

(iv) Calculation of probabilities of error in data

»- transmission for tensor product codes under
various rates of transmission.

(v) Calculation of the weight distribution of product
codes and determination of its relation with those

of the component codes.




(vi) Study of the code or codes which can be iterated in
a product manner indefinitely with a non-zero data
transmission rate. The iteration may include the

use of convolutional codes as components.

Chapter 2 1s devoted to the null space of a tensor product space
(Item 1). The possibility of decomposition of encoding and decoding
processes of a product code into those of its component codes is shown
in Chapter 3 (Ttem ii). In Chapter 4, we discuss product codes with
cyclic component codes and emphasize the dual product codes as varilable
redundancy codes (Item iii). Some decoding schemes are studied in
Chapter 5. In the last chapter, miscellaneous results and concluding

remarks are included. Items (iv), (v) and (vi) are reserved for future

studies.
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CHAPTER 2
THE NULL SPACE OF A TENSOR PRODUCT SPACE

A linear code can be completely specified by either its generator
matrix or its parity-check matrix or both. A product code is determined
by two original code spaces and the method of combining them. For
example, one of the product codes is a code whose generator matrix is
the tensor product of the generator matrices of two given code spaces.
In order to have a better understanding of a product code, it is
desirable to know both its generator matrix and its parity-check matrix.
The knowledge of both facilitates the determination of the weight -
distribution of the code and the implementation of encoder and decoder.
Furthermore, it provides better insight into the code structure.

The row vectors of the generator and check matrices of a code are
the mull spaces of each other. In the case of a product code, either its
generator matrix or check matrix is expressed as a tensor product of two
component matrices. Therefore, it is desirable to develop some techniques
of finding the null space of a tensor product space. Slepia.nl found a
simple way to evaluate the null space of an equivalent code space of the
tensor product code space instead of that of the tensor product code
space itself; he aléo concluded that there seems to be no simple
expression for the parity-check matrix for a product code of two
component codes in terms of the parity-check matrices of the component
codes.

The direct method of Section 2.1 is an extension of the technique

suggested by Slepia.n.:L Section 2.2, the algebraic approach, makes use




the algebralc structure of the tensor product space to express its null
space in terms of the null spaces of the component code spaces. For
completeness the determination of the null space of a tensor product
space involving a specilal type of translation of fields is discussed in
Section 2.3. Such translation is desirabie in designing more efficlent
error-locating codes.

Since the generator matrix G and the parity-check matrix H of a
code space will be used very frequently in the following sections, and
because of the dual property of these two matrices, we introduce a
gp (stands for g_enerator-pa.rity-check) matrix D and a pg (stands for
parity-check-generator) matrix E. The gp matrix D can be' elther a
generator matrix G or a i:arity-check matrix H of a code space; the
row space of the pg matrix E gives the mull space of the gp matfix D.
In other words, if we set D = G, then E = H; and if we set D = H, then

E = G. The relation between D and E can be described mathematically by:

DEL = O

T

or equivalently ED" = O. (2.1)

If the given gp matrix D of a code can be transformed to the reduced-
echelon form D' by elementary row operations, then the following theorems

(after Peterson®) give a simple way of finding the pg matrix E of the code:

Theorem 2.1
If one matrix is obtained from another by a succession

of elementary row operations, both matrices have the

same row space.



Theorem 2.2
If U is the row space of the gp matrix D' = [I, P],
where I, is an h X h identity matrix and P is an
h X (n-h) matrix, then U is the mull space of
Q=[-pT I,.5), where Iy is an (n-h) X (n-n)

identity matrix.

with the help of these theorems the mull space of any gp matrix D,
which can be‘transfozmed to the reduced-echelon form D' by elementary
row operations, can be easily found. Unfortunately, in general, the
gp matrix of a product code cannot be transformed to a reduced-echelon
form without resorting to the permatation of columns. Although the
permutation of columns of a gp matrix does not change the minimm
distance or the weight distribution of the code, it will, however,
destroy other code properties such as being cyclic, orthogonal, and
comma free.

The following sections give some techniques to determine the mull
space of the gp matrix D of a product code without disturbing its
original ordering of columns. Since the null space is specified by
the pg matrix E corresponding to the known gp matrix, D, all the
techniques in this chapter show how to evaluate E from D. The same

techniques may be used in evaluating D from E.

2.1 The Direct Method

Two linear (n,k) codes are said to be equivalent if each code word
of one code can be obtained by a certain permutation of code symbols of

one and only one code word of the other code. This equivalence relation

-13-




can be defined alternatively as either

(1) two linear (n,k) codes are equivalent if and
only if the generator matrix of one code can
be obtained by permuting the columns of a
generator matrix of the other code;
or (i1) two linear (n,k) code are equivalent if and
only if the parity-check matrix of one code
can be obtained by permuting the columns of

a parity-check matrix of the other code.

The purpose of investigating the equivalent codes in this section
1s to find the pg matrix E of a product code when its gp matrix D is
known through using one of the equivalent codes as an intermediate
step.

Before proceeding any further, we first define a permutation matrix
%. The 7 matrix is an n X n square matrix whose columns (or rows) are
obtained from a certain permutation of the columns (or rows) of an
n X n unity matrix I. It is evident that when a k X n matrix A is
postmulitplied by m, the resultant matrix A' = Ax can be recognized as
a matrix vhose columns is a certain permutation of that of the matrix A.
The pattern of permuting the columns of the matrix A to obtain A' is

identical to that of permuting the unity matrix I to form =.

Iemma 2.1

A permutation matrix w is an orthogonal matrix,

i.eo, ﬂT = ﬁ-l.

-1~



Proof
The permatation matrix n is obtained by permuting
the rows of the unity matrix I; hence each row of
the matrix = can be considered as an n-tuple of
the form (0,0,...,0,1,0,...,0), where only one

camponent is one and the rest are zeros. We

write x as
- %
e
22
X = .
| X, | >
where

CNT
, = s | =833 =
35(31') Lf-i‘a] 7% if 1i£J5 .

Since a4's are row vectors of the unity matrix I

and the row vectors of a unity matrix are orthogonal,

then
F'L_a_l;
%
Xl = : [al] apl ... an]]
Be
< (o4
=1I,

* , denotes a row vector.

-15-
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which implies
b4 = . . Q.EoDo

Theorem 2.3
Let D and E be the gp and pg matrices respectively of

code C, then Dr is a gp matrix of the code C', which
is equivalent to C, if and only if En is a pg matrix

of the code C°'.

Proof
(Dm) (E )T
) = D nL gL by Lemma 2.1
= DI ET
= DET
=0, by hypothesis.

Also, Rank(Dx) = Rank(D)

Rank(Exn) = Rank(E).

Since the rank of a matrix is preserved_under
permutation of the columns of the matrix, therefore,
if Dn is the gp matrix of the equivalent code C!',

then Ex must be the corresponding pg matrix. Q+E.D.

Theorem 2.4
Let D be a gp matrix of a code C. Assume Dnt is the
gp matrix of an equivalent code C'. If E' is the
pg matrix of C', then E = E't™L = E'nT 1s the pg

matrix of C.

~16-




Proof

(p)EDT =0 by hypothesis

DEL = D(E'aT)T

p(xT)T(e")T

And Rank(D) = Rank(Dx)

Rank(E) = Rank(E'xT) = Rank(E') Q.E.D.

(ox)(E")T = 0 by Equation (2.4)

(2.4)

Theorems 2.1, 2.2, 2.3 and 2.4 suggest a way to evaluate the pg matrix

E when the gp matrix D of a code is given. The procedures are as follows:

1.

Iet D be the h X n gp matrix of a linear (n,k)

code C, then by proper elementary row operations

D can be transformed to an echelon form D' which
contains h columms each of which consists of one
unit component and the rest of the components are
zeros. This step can always be accomplished because
ar. h X n gp matiix D consists of at least one set of
h independent columns if h < n, and rank D = h. It
can be easily shown that any one of these sets of h
independent columns can be transformed to h columns,
each equal to one and only one column of the unity
h X h matrix Ij.

Choose & suiteble pernutation matrix x such that

D''* = D'x = [I,, P}, the reduced-echelon form of D.

-17-




3« Form E" = [-PT, I, ;]. By Theorenm 2.2, we know
that D"(E")T = o.

L. Let E = E"xT . By Theorem 2.4, E is the e
matrix of the code C corresponding to the gp
matrix D'; but D' is obtained from D by elementary
row operations, hence D and D' generates the same
space? Therefore, E is the pg matrix of the code

C corresponding to the g€p matrix D.

Example
[101000000]
011000000
101101000
D=l000011000 (2.5)
000000101
| 000000011].
1. The first row is added to the third row
(1 0100000 0]
011000000
000101000
| S
D =1000011000 (2.6)
000000101
000000011].
2. The first, second, fourth, fifth, seventh, and the
elghth eolumns should be gathered together to become
the first sixth columns, hence we choose
(10000000 0]
010000000
000000100
001000000
"=1000100000 (2.7)
000000010
000010000
000001000/,
000000001
-18-~




The last three columns of Equation (2.7) can be

interchanged among themselves.

1 00000100]
010000100
" _ e _|001000010
D =DM =1500100010
000010001
0o00001001].
3. From Equation (2.8), we have
10 0]
100
010
P=i{o1o0
001
| 00 1§
(110000
P =|{001100
looo0o011],
then [~
E" = -P 3 In_h]
110000100
={oo01100010
000011001].
4.
r [L11000000
E=E""" ={000111000
000000111].

The method described in this section is straightforward but tedious.
Since it does not refer to the component codes or the manner of their

combination, the resulting pg matrix E found in this manner usually is

-19-
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not in a form which gives the best insight of the code structure. There-

fore, it 1s necessary to resort to some other techniques which will lead

t0o a more meaningful result.

2.2 The Algebraic Approach - Elements of Two Original Component Codes

and Elements of the Resultant Code Expressed in the Same Field.

The algebraic approach relies on the algebra of the tensor product of
matrices as well as the understanding of vector spaces. The following

lemmas and theorems are first developed to facilitate the discussion.

Lemma 2.2

Let A and B be two square matrices of order r and s

respectively, then

|2 ®B|=[al ® [B]" .

Proof

It 1s known that every square matrix can be trans-

formed into a triangular matrix* by a non-singular

*By'triangular matrix, we mean the matrix of the form either

811 815 « .« « aig] b3 0 O0...0

O 822 * o a.gn bel b22 0 o o @ 0

FOOQoO
Qe ¢ =
- O
O''e o o s

-20-




square matrix in the following way:

Q;l AQ =T, (2.13)
Q,;l BQ, =Ty, (2.14)
vhere T, and T, are triangular matrices and |q1| £ 0,
IQZI ;4 O. Then -
[4®3 [« a0 A o) PO B 4,) &
- | T @ T &5
i P |
- |4 ®@g||T, @1 o @ G
= TA®TB| . (2.15)
But
a1 %2 R £
0 &y * 8Bop r
lTA‘= o o0 . = [[ayy (2.16)
i=1
0 (0] a
rr
0 by, . .
|TB ={o0 o . . = iLIlbii . (2.17)
0o o0 b




By Equations (2.15), (2.16) and (2.17), we have

|A ®B|=1,® T

a11Tp a'lQTB .
0 eppTp -
= 0 0 .

O e o o o o

a11b11

aj1bop

811Pgs

a1yl

asyly

0 appTp

apobyy

as5Pon

r s
- < Jlfii)s ( i]__-_[lbiiy =[a]? Jms "

=|al® lef" .

2D

Q.E.D.




Lemma 2.3
Iet D=P®Qand D' = P*'@Q'. If P! and Q' are
obtained from P and Q respectively by a succession
of elementary row operations, then D and D' have

the same row space.

Proof

This is a direct consequence of Theorem 2.1l. The
row space of D = P Q contains all the elements
of the form &, =2,Pi- QU , , where Pi € row

i=1

space of P = row space of P', q; € row space of
‘ | S—C2 §
Q = row space of Q'. Hence, ,d,6 € row space of
D', or row space of D ¢ rov space of D'. By symmetry,
we have row space of DD row space of D'. Therefore,

row space of D = row space of D'. Q.E.D.

From the above lemms, we can see that the rank of the matrix D=PQ@Q

is invariant if elementary row operations are performed on the matrices

P and Q.

lemma 2.4

Let D = D) @ Do , then

Rank D = (Rank D;)(Rank D,).




Proof
Iet A and B be the square matrices of maximum order

contained in D; and D, respectively, such that

|A|# 0, [BI£ O.

Then it is clear that

order of A

‘rank D; and let it be denoted by ry
order of B = rank Dy, and let it be denoted by Toe
Then the square matrix A® B must be contained in

D =D @Dy, But, by Lemma 2.2,
|A®3|=|a["2|8|™L £ o.

Hence, Rank D > order of AQ B = (order of A)(order of B)

= (Rank D;)(Rank D).

By Lemms 2.3, the rank D is unchanged, if the elementary
row operations are performed on Dy and D2. But Dl can
be reduced to ry non-zero rows since its rank is ry;
similarly, Do can be reduced to rp non-zero rows.

Hence, after performing sultable elementary row opera-
tions on Dy and Dp, D = D} ® Dy contains exactly rirp

non-zero rows. Therefore,
Rank D < rirp = (Rank Dp)(Rank Dy).

Combining with the above result, we have

Rank D = (Rank D;)(Rank Dp). Q.E.D.

o) I




Theorem 2.5
Let D and E; be the gp and pg matrices respectively of
code C1, and Dp and Ep be gp and pg matrices respectively
of code Cp. If Dy is an hy X n; matrix and D2'lis an
hp X na matrix, then both row spaces of Inl®Eé and
E1 ® In, aTe contained in the null space of the matrix
D, where D = D1 @ Do. |

Proof

| D(Iy, @ Ep)T

= (D, ®Dp)(Iy, T @ )T

= Dy, ® DBt
=D ®0, since DE,T =0
=0

1 Likewise, D(E; ® In,)T = O Q-E.D.

By elementary row operations, the identity matrix Inl can be trans-
Eq x
formed into the form Ep in such a way that
“Eq ,
(1) row space I, = row space ], this is always
1 E,

e

E
true since [ l] can be obtained from I, by
Eq 1

elementary row operations;

*E may be called a complementary space of E with respect to Iny
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(11) (row space of Ej)((row space of E;) = (0,0,...,0),

the all zero nj-tuple: (2.18)

The above two conditions can be described mathematically as row space

of In, = (row space of Ey) @ (row space of E;), where (® is the notation

for the direct sum.

Similarly, the identity matrix In2 can be transformed into the form

Ep
I:EE] by elementary row operation such that row space of In, = (row space
of Ep) ® (row space of Ep). (2.19)

Corollary 2.5.1

The row spaces of E) QE,, E) ®E,, and E; @ E, are
subspaces of the null space of the matrix D = D; ® Do.
The proof is similar to that of Theorem 2.5 ,» hence is

omit‘:ted here.

Lemma 2.5
Let Ay, Ap, B and Bobe h Xn, k Xn, £ Xmand r Xm

matrices respectively, then i
A1 @By
Rank 4 ® 3B, = (Rank Ay )(Rank B;) + (Rank A,)(Rank By),

provided one of the following three conditions is satisfied:

A
1

(1) l@xakaA2 = Rank A; + Rank A,
"B,

(11) Rank B = Rank B; + Rank Bp,

(111) both (1) and (i1) are satisfied.
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Proof ,
In the following, it is assumed that the condition
(1) 1s satisfied. The proof for the case that
condition (11} is satisfied is similar and the
proof for the condition (1ii) is evidemt. Hence,

the proofs for conditions (ii) and (ii1) wiil be
omitted.

By Lemma 2.4, we have

Ba.nk(Al®Bl) = (Rank A; )(Rank B,) (2.20)
Rank(A, ® B,) = (Rank A)(Rank By). (2.21)
To complete our proof, we need only to sl'mwv that none of the non-

zero row vectors of Al®Bl can be“ expressed as a linear combination of

row vectors of Ap ® B and vice versa. lLet

-a-ll 312 cee aln— bll blz see .b:hn-1

321 322 e es 8.2n bal b22 soe ban
Al® Bl =1 ® *

%1 ®n2 oot Smn| | Pe1 P2 cc Pm

and let a3 ® by be a row of A) @B :

(81 ® by = (a31b51, a31bsp, oo, 8y7byy, Beobg) s85BY0,..

eees 812b3m, eee, 8inbjl,84nPyos eees ainh,jm‘)'



Define a linear mapping

Mg: row space of I, ® I, — row space of I, such that
only Gth, (med )R, (omss)th ., [(n--l)rn+7]th components
are retained after mapping.

Therefore,

Mgl a3 ® bil = (a11b5s; aiobss, ++-, ainbss)
= byg(ai1, ayp, ««v,a4p)
= b,j& B.i .
Mg can be easily shown to be a homomorphism. Let

—

[0 o ... Qp | (311 B1o +++ Binm
Gp1 Qpp «e Qop P21 Poz +- Bop
A2®B2= . R

akl akz 0 akn— _.Brl BIQ LR Bm

e

and suppose

ay ® bj =Cll(£_]_-4® ﬁl ) +C12( 241 (6% 52 ) + eee

coe # CL( O ® Bp) +eee + Ca (B B By )+ .o

+Ckr( ak ® ﬁrl) )

where Cj1, C12,+++,Ck, are constants and at least one of them is not

zero, and () @ By ), «oe, (O @ B, ) are rows of A ® By. Then
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Ml 21, ® b3) =1slc;, (o0 @ By) +C (0 & Bp) +.n 0 (@ B,

or

bja ay = CllBliS al + C12ﬁ25 al + eoe + CRIBTS G (2-22)

for 8 = 1,2,3,+..,m, and j = 1,2,3,...,4, since B, is not s matrix with
all zero elements. There exists for each a; , at least one non-zero
)

isfied. in Other words (=3
2
| — |

s

- =t
L3 DL

- 4hadt T 43~ (1 AN
Jjd such that Bguatiocn \2.22)

is contradictory to our assumption that

A
Rank = Rank A, + Rank A2

Ao
which implies that no rows (containing at least one non-zero elemert) of
matrix Aj can be obtained from a linear combination of the rows of matrix
As.

Through a similar procedure, we can show that no rows of Ay, & Bp can
be obtained from Al(g)Bl by elementary row operztions. Therefore, we have

A Q By

1 ® Be] = Rank(A; ®By) + Rank(is @ Boj. (2.23)

-

The proof is completed by combining Equaticns (2.20), (2.21), and (2.23).

Theorem 2.6
Iet Dy and E; be the gp and pg matrices respectively
of code C; with block length nj, and let Dp and Eo be
the gp and pg matrices respectively c¢f code Cp with
block length n,. If the gp matrix of the produet code

is given by D = D; @ Do, then the pg matrix of the

-29-



product code 1is
B ®Ep
E=|E ®E,

E1®E2 ’

where row space of Inl = (row space of E1) ® (row
space of E;), and row space In, = (row space of Ep) @

(row space of E,).

Proof
By Corollary 2.5.1, we know that the row spaces of
E] ®Ep, E} ®Ep, and E] @ E, are all contained in

the null space of D = D} ® Dy. Hence,
E; Qs
row space of E1®E2 C row space of E.

E; ® Ep
The dimension of the row space of D = Rank D = (Rank Dy )(Rank D).
The dimension of row space of E = Rank E

=nln2-Ra.nkD

= nn, - (Rank D7 )(Rank Dp).

Since the block length of the product code = njn,, all we

need to show now is that the dimension of

EL® B, ®E
the row space of | By ® Ey | = Rank | Ey @ Ey | = Rank E.

E1®E2 E1®E2
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This is true, since

e ]
E®| 5
Rank | Ey @ E, |= Rank 2
E ®E, 5® 5
—El®1n£
= T\En‘)i
| By QE; |
= (Rank E,)(Rank In2) + (Rank E;)(Rank E,) (2.24)
3} -
by Lemma 2.5, since Rank [El} = Rank E; + Rank E,.
But RankEl-.-.-nl-Ranle N
Ra.nk InQ = n2
Rank Ej = Rank I, - Rank E; =m - (n;- Rank Dy) ¢ (2.25)
= Rank Dy
Rank E2 = n2 - Rank DE . /

Substituting Equation (2.25) to Equation (2.24), we have

E1®Ep

Rank |E) ® Ep | = (m3- Rank D) np + (Rank Dy )(np- Rank Do)

E ®Ep
= nynp - nyRank Dy + mpRank D) - (Rank Dp)(Rank D)
= nyn, - (Rank D, )(Rank D,)

= Rank E QchDo
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Corollary 2.6.1

Theorem 2.6 is equivalent to the statement that if

D = D1 & Do, then

E =
Proof
By Theorem 2.6,
Eq ® E—2 Eq ® ET:Q
E-QE E-®E
1 2 1 2
row space of E = row space of | = row space of
E ®Ep E) @ Ep
_E1®E%
O
! ®[Ea] By ®In,
- = row space of El = row space of
I E
=le = m @ |
-'E"l
since row space of In]_ = row space of L.E]_]
'E,
= row space of _] . Q«E.D.
B

Theorem 2.6 gives a method of obtaining a set of basis of the null
space of the matrix D = D) @ Dy. The basis is divided into three parts;
namely Ey QE> , By ®Ep, and E; ®Ey. The row space of E can be
expressed as the direct sum of its subspaces

(row space of E; ®Ey) @ (row space of E; ® Ey) @ (row space of E; QEs).
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Tt should be noted that the spaces of the matrices E; and Eo may be equal
to those of the matrices Dy and D, respectively®, but that, in general,
they are not. When the spaces of the E matrices differ from the spaces
of the D matrices, it is sometimes a rather tedious procedure to evaluate
the E matrices from the E matrices which are not in echelon form. On the
other hand, Corollary 2.6.1 gives the mull space of D = D) @ Do with a

minimm emount of calculetior and no unknown matrices to be evaluated.

The row vectors of this representation of the null space are, however,

not linearly independent.

Example

Given
101

. |
loor!
o+ O
oo
oMK
oK
e
.
o
r—
o
.—-I
i

D=0 @D =

CoOOKHH
CcoOOrOO
OO KHOOO
OOHKF OO
oOroOO0OO
HOOOOO
HHOOOO
coOOrOK
OCOrOKO
COrKHHM
OHOOOH
HOOOKO
HHOOKHKH
oOHOKOHM
HOMOMO
et

lcoooowl
OOOOHKO

*This means that the complementary spaces of E; and Ey coincide with
their null spaces.
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It can be easily shown that

O+HO [oNeoNe!
.
—~ OO eNoNe]
O~ OO — o o
~ O~ OO0 — o ~
—~ o~ ~ OO ~1 —~ O
{ 1 1 } L ] L ]
] n n |
— —t [\V} [4Y
25] Im =] [

By Theorem 2.6, we have

lcodl TooA! Too o
O+H0O OO0 O0OO0O0O

10010000010000000O0]

o

oloNoNoNoNoNoN_ RO R
eNoNoNeoN_NoNoN_NoNe

cooAooo0oAH0OO
OC0000OO0OHOOO
coHoooHOOO
OHOOOOHOOO
COoO0O0O0OHOO0OO
H~o0o0cooAd00O0OO
Co0O0O0OHOOOO
OC0000O0OMHOO
cododoAd~AOO
ordoHOOAHAAHOO
cooocoHo~AOH
HooodHO0OHOH

OCOO0OHO 400~
COO0OO0O0OA~dHO
4O 40 A4 40O

OHOHOHAMHOO,

o

(@]
O

00000111000000

o o o ~O0O0 HOO ©OoOOo
H & ®
® @ ® Odd OHdHA ooOoH
S Ho-H HoOoHd Odo
e I I T W B} L K e T O L K= K=Y 1Y
(I ]
&=

1
=y
i




Inl ® Ep
Ey ® Inz

oo

By Corollary 2.6.1, we have

looococoHAoocoococoooM
eNeoNoNeNoRN_NoNoNoNoNoNoRoN_Ne
CO0O0O0OHOOOOOOAOO
0C0O0O0OHOOOOOOMOOO
0OO0OO0O0OHOOOOOMHOOOO
COOO0OHOOOOHOOOOO
COO0OHOOOOHOOOOOO

! ~ 001_ COO0OHOO0OO0OHOOOOOOO0O
~ OO0 COO0HO00HOOOOOOOC
e~ _100_ oReoN_RooNeNoloRoNoNol  NolNoN

cNoN_NoRoNoNeoNoNeoNoN NoRNeoN  Neo
'ooocooA! _001_ ol _NeReoNoNeoNoNoN NeNoNoRNoNeo Ny
(oMo NeNeo N No/ OO O O0O00O0O0OHOOOOOAO
QOO0O~00 ~ OO OHOOOOHOOOOOHOO
OCOHOOO O+ HFOOO0OO0OO0Q0COHOOHO0OOH
O~O0O0O0O0O — O~ HOOOOO0OOHOOHOOAHO
_F.....OOOOO. _111: _lOOOOOlOOlOOlOO_ ,

Although this representation has 15 rows, the actual rank of E remains to

_35.-

When the gp matrices of two original component codes Dy and Do are

Involving the Translation of Flelds - Elements of Two Original
Component Codes and Elements of the Resultant Code Expressed

in Different Flelds

over GF(p‘), the elements of the resultant tensor product code glven by
Dy ® D, are first expressed in terms of field elements of GF(p?), then

2.3 The Determination of the NMull Spsce of a Tensor Product Space

be 12.




trenslated into the field elements of GF(p) according to certain rules.
The technique described in Section 2.2 is not applicable, in general,
for this case since a change of the rank of the matrix may occur due to
the field translation.

As the companion matrix plays an important role in the development
of this section, a brief explanation on this matter is warranted. ILet
r(x) = rg + ryX + <00 + rz_l:c"’lr+ x be a monic polynomisl, then the
companion matrix of the polynomial is defined as

0 0
1 e O
0 0

= O O

. . . . (2.26)

- . .

.. .000'
oo

. . L] .

L:I'O -rl "r2 -r3 LI —I‘L _]; *

Sometimes the companion matrix is defined as the transpose of the expression
in (2.26)
O O O L O -1’0

l O O LI O -rl

-
To = 2 (2.27)
0 0 1 Y 0 "I'3

_ Tp1]

O o o o
O & o 0
(@]
.
.
.
H

For convenience, both matrices of (2.26) and (2.27) are called the companion
matrix of r(x). They can be distinquished by the notations T, and T.
There are two methods of obtaining p-ary codes through the fields

translation from the g-ary to the p-ary, The first method is shown by
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Cocke35 who shows the following way of fields translation: +the parity-
check matrix Hq of a g-ary code is first chosen, then each element is
expanded into an g X § p-ary square matrix, where q = pz, in the following

mannmey
0 = [om]

50 = TQO

=Iz
l
ﬁ =}TO

ﬁq-2=> T()q'“2 )
where, B is a primitive element of GF(q), and Ty is the ccnipanion matrix
of the primitive polynomial over GF(p) with B as its primitive root.
It can be shown® that the expanded p-ary code 1s generated by the generator

matrix which is obtained by the expanded Gq, the generator matrix of the

original g-ary code,in the following manner:

0 = [OL)(L]
B0 = 1.0 =1,
gt = Te

L

i
gt =1l

-2 ° -
ﬁq :>ch2 L)

*See Appendix, Theorem A-k.
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Tt has been pointed out that33 a code obtained from the fields trans-
lation in this manner 1s suitable for burst-error correction. It should
be noted that therminimum distances, the total number of code words and
the data transmission rate of both the g-ary code and its expanded p-ary
code are identical, but an increase of code word length by 4 times results
from the translation. The second method is useful in the design of a
p-ary Bose-Chaudhuri-Hocquenghem code. In such a design it is convenlent
to express first the elements of the parity-check matrix in terms of the
roots, which are elements of GF(q) with q = p?, of the code generator
polynomial g(x) over GF(p), and then expand the matrix into its p-ary

representation according to the following rules:

0=

o o o O




vhere pl and Tp are defined as before. If the row space of the original
g-ary matrix is cyclic, the cyclic property is unchanged by the field
traa;slation» made in the second method. However, such is not the case
under the field translation of the first method. Furthermore, it is
possible although less convenient to obtain the p-ary B-C-H parity-check
matrix without employing any field translation. Thils is not feasible
if the first method is used. |
An efficient error-locating code can be obtained by employing the
technique of field translation. Its structure can be understood from
two different viewpoints:
(1) The parity-check matrix of size r; X n; of a
q—ai'y t-error correcting is first designed.
Each g-ary element is then mapped into an
ro X n2 p-ary matrix, where ro> < np, instead

of a square matrix in the following manner:

0 = [0r2xn2]

[ ] )
0 ] v
BY = A.= [Ir2 : P] or [Ir2 : P] n
pl = T
62 = TOQA

pt = 1,la

-2 " -
> 1,92 ,
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where A is the p-ary parity-check matrix of an
s-error-detecting code. It can be easily shown
that the row space of ToiA is identical to that
of A. This viewpolnt does not require the concept

of the tensor product of codes.

(11) The parity-check matrix is considered as the p-ary
representation of the tensor product of two q-ary
parity-check matrices, denoted by H = [qu® H2<_1]p'
The p-ary representatlion of Heq obtained by using
the second method is identlcal to the matrix A as

described in (i).

It 1is easier to evaluate the code space from the tensor product view-
point, especlally when Hpq is convertible 1nto a single-rowed matrix. This
conversion can be easily performed when the second component code 1s cyclic.
A cyclic p-ary code with s rows in its parity-check matrix can be made
identical to a cyclic code with a one-rowed pl-ary check matrix, provided
£ = rs and a suitable mapping is performed from GF(p®) to GF(pt). The
foilowing theorem is useful in determining the code space of such a

product code.

Theorem 2.7
Let D1q and E1q be respectively the gp and pg matrices

of a g-ary code C3 of length nj, where q = p‘. If
(1) Dpg is a 1 X ny pg matrix of a cyclic

code C with ny 2 I
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(i1)

and

with suitable mapping, Dpg is of the form

1Y i iy iny-1
[ﬁoﬁla‘g...ﬁ“:ﬁ‘a“ e B2 ]
]

3

where Bl is a primitive element of GF(q);
(111) the row space of Epp is the mull space

of [Dpglp , then the mﬂ.l.space of [D1q @ Dpqly

is

In, ® Egp
g%
[ ]
pt o
[ ]
Elq_® . : OCCM
. '
4-1 ¢
L | B
B i

where [ ] is the matrix with each element in the

bracket expressed as a row vector over GF(p) in the

following manner P
i i i
B = B = sl] ,
and OC(M is introduced for the sake of compensating

the length of each submatrices in the following

manners
- 5 - —
BO } B :
| { ]
: 1
. Bl : 1+ :
- [ | = .
P . : Ocom 1. ! OLX(na-L)
]
. ' .
2-1 3 144-1 1
i LA - .p, JL 4.
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The proofs of this theorem and its preliminary lemmas are given in

the Appendix.

We close this section with an example to illustrate Theorem 2.7. IlLet

g0 o g0 B2 B5 56]
o 8% g2 5 g6 g

q =
1
BO—1 = LO] K B
- 0
§ 0
B | = Ll] ;B
- 1-
Therefore,
D2P =
Egp =

= |#° gl g2 p3 B“]

9.9 -8 o0

-1 -1 .
51 . L1T ; 56] = o] ; {37] = g%l .
l- -

10010

01011l! = binary representation of D2q
00101

(11010

LOllOl:\,

The row space of Dgp and that of Egp are the nmull spaces of each other.

(6% 2 8% 0 0 o]

=4o-




[qu ® ngL =

10010} 110010{01011111100 }11001 |

01011! (O 101011/01110}10010 !00101
00101, 10010110111} 11001 110010

_—- - _——4—__-_...._..-..___-_-

llOOZI.O‘OlOll 1110011001 ¢ llOOl
. OlOll‘ 01110, | lOOlO! 00101 ,00101
10010110111, 11001; 10010 llOOlO_

Then the null space of [D1q® ng:L is, by Theorenm 2.7,

In, @ Exp
_ 0 _
F1q® pt 1 Ocom
B2 |
- —
- R

Ol O 1010 ;0
010 ja O 10 0.
010 0w O 10
010109 ma O
0.0 ! O o1101

16000 ;00100 | 1ooool i
0100011000 + 01000' O f O
00100, ‘01100 | 00100 !

- = gl P —_—- ke — -

00100 11100T 10000: |
11000110100 , O ' 01000 Q . O
0110010000, _,Q0w00, |
11100110100 " ' 16000+
10100! 10000' O O 101000 | Q
10000101000, ~7_ ! 7 100100
10100110100 , 10006
2000010000 ; () ! O O ' 01000
01000+ 01000 1 00100

-43-




2.4 Remarks

The direct method of finding the null space is straightforward but
tedious. However, it is the one method which remeins applicable when
the other two methods fail. When the elements of the two original
component codes and the elements of the resultant product code are
expressed in different fields, usually the resultant code elements
are in the ground field and the elements of component codes are in one
of the extension fields. Theorem A-3 of the Appendix glves the row

space of
[Elp Q Ina]
In; ®Epp

only as a subspace of the null space of [D1q® quL « In this case

the direct method is recommended for determining the whole null space
over the ground field, and Theorem A-3 can be used to lend some insight
of the code structure.

It 1s interesting to note that, by Corollary 2.6.1 and Theorem A-3

that while

vl

completely specifies the null space of [D1p® Dgp] , the same sapce

[ eo)

is Just a subspace of the null space of [qu®D2q:|p « It can further




be shown that the row space of [qu_®D2qL is a subspace of
[D1glp @ [Dpgl, - While the circuits for implementing [D1q ® Dpglp and

(D141, ® [Dpglp are of about the same order of complexity, the code space
gspecified by the latter is larger than that of the former. Therefore,
the adopftion of the latter’a.s the G matrix qf:a product code is prefermd. 4
By similar reasoning, a product code with parity check matrix H = [Elq®H2q]p
is better than that with E' = [H; 1, ® [Hy ], -

Theorem 2.6 can be extended to be applicable for higher order tensor

product codes as follows. The null space of the row space of

D=D1®D@D3
is the row space of
2, ®E, @,
E®5Q
£ QEQE,
E= 5 QLQ
E®E®E;
E1 @
B ®EQL| ,

el

where the row space of E; is the null space of Dy for i = 1,2,3. Likewise,
Corollary 2.6.1 can be extended to read that the mull space of the row space

of
D =D ®nR0;
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is the row space of
In, @I, ®F; |
:cnl@ Er, @I 3
B ® In, ® Ing| -

It is not difficult to generalize the above results to the case of

D=D1®D® ... Dy for any J.

Theorem 2.7 is useful to determine the null space of the row space of
[qu® ng]P , provided Dpq is the one-rowed g-ary gp matrix of a cyclic
code. In the Appendix, this theorem has been extended to cover the case
when the second component code is not cyclic. Also the difficulties are

pointed out when D2q is a multi-rowed matrix.
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CHAPTER 3
ENCODING AND DECODING OF TENSOR PRODUCT CODES

Usually, there are two schemes for encoding a linear code. The
first scheme 1is simply choosing either prestored basis code vectors
or & linear combination of such vectors. The other method is to
calculate the parity-check digits from the given information digits
according to the parity-check matrix of the code, then the check digits
and the information digits are combined together to form a code word.
There are also two general methods for decoding a linear code.
One is to compare the received sequence with the code word dictionary.
The code word which has the smallest distance from the received sequence
is considered to be the original code word sent by the transmitter.
The other method is to check whether the received sequence satisfies
the code parity-check matrix. Iet _r  be the received sequence. The

syndrome of any received sequence is defined to be
LS,=,T ,HT

where H is the parity-check matrix. The decoding procedure is to
evaluate the syndrome first, then to determine the error pattern or
to detect the errors from the calculated syndrome.

The encoding and decoding of a product code can be achieved by
similar schemes. But in so doing, we do not take full advantage
of the product code. Hence an alternate scheme should be used. The

main purposes of this chapter are as follows:
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(1) to design the encoding circuit for a product code by
a logic combination of the encoding circuits of its
component codes;

(11) to design the syndrome calculator for a product code
by a logic combination of the syndrome calculators
of its component codes;

(111) to decompose the decoding procedure of a product
code into the decoding procedures of its component
codes.

The designs will first be directed to the type of product codes in
which E = H) OH,, then to the type in which G = G, (X)G,-

The discussion and results in this chapter are intended to be as
general as possible, hence they are applicable to any product code with
linear component codes. Specific examples will be deferred until later
chapters. It i1s believed that the encoding and decoding schemes presented
here for the product codes with parity-check matrices H = Hl(:)H2 and
those with H = [H) (®)H, ], have not been worked out in such a detail
elsewhere. It is also believed that the decoding scheme described in

Section 3.8 is the most straightforward technique in comparison with other

existing schenes.

3.1 Encoding by the Parity-Check Matrix H

Systematic encoding* for a linear code whose parity-check matrix is

specified can be accomplished by the check digits caleylator of the code

*See Hamming7 for the definition of systematic code.



shown in Fig. 3.1. The input sequence consists of information digits

Check Digits
Calculator O
input — output
inf ti t code words
(information digi s) | | ( )

Fig. 3.1 Check Digits Calculator for Encoding a I.inear Code

and all zeros in checking positions. The check digits calculator gives the
check diglts for the input information digits. The check digits are added
to the input sequence to form the encoded output sequence or a code word.

For simplicity, Fig. 3.1 1s symbolically replaced by Fig. 3.2.

input — Encoder H |—> output
(information digits) (code words)

Fig. 3.2 A Block Representation of Fig. 3.1

3.2 Encoding of a Product Code with Parlity-Check Matrix H = H1®H2

In this section and the following two sections we deal only with the
case that the elements of the resultant product code and the elements of
its component codes are in the same field. The case involving translation
of fields will be discussed in Sections 3.9 and 3.10.

Fig. 3.3 shows the encoder for a product code with parity-check matrix

H = Hi(XY)Hy. The inputs to the scalar multipliers,
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Reset

al | 4
Check Digitg Accumulating
> Adder
Calculator © ‘1 . °
Reset .
8o ¥ .
CD ! Check Digits Accumilating |_ |
Calculator Hp Adder . :{
; Reset
'arl " Y
input Check Digits Accumilating
R Hp —» Adder —
Calculator
(information
digits) ,
Buffer —-—*{£} = ocutput
(code words)

Fig. 3.3 An Encoder for the Product Code with
Parity-Check Matrix H = H; (XK,

81, 82,++¢,8y , 8T€ set equal to the components of (hlj: hej,...,hrlj)T
respectively vhen the nj-j+l, nl-j+2,...,nl-j+n2'th digits of the input
sequence are fed into the encoder. (hlj, hQJ""’hrlJ)T is the jth
column of the matrix Hy, an r)] X n; matrix. The check digit calculators
H2 calculate the check digits once for every subblock containing n,
digits of the input sequence. The accumlating adders over GF(q) are
adders with memories; each new input to the adder is added (over GF(q))
to the value previously stored. At the end of each code word length
the adders should be reset to zero. The outputs of the adders are
added in proper order to the read-out version of the buffered input
sequence. For the sake of explanation, let us assume H) and H, are the

parity-check matrices of systematic codes, in other words
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g = (I, P] (3.2)

=1, Pol, (3.3)

then — -1

(1, P}
[Ia P2] O

|
u
[12 Pa] |
|
|
|
X8 = y | 1O (3.4)
t
|
|
|

O .

*

1, p,}

It 1s evident that the columns of H(X)H, containing only one single non-
zero element (which is usually the unity element) are the positions of the
parity-check digits. They correspond to the columns in which the unity
matrices I»'s appear in the matrix of Equation (3.4). To these positions the
outputs of the accumlating adders are attached. These check digits, called

for by a synchronized switch, are included in the final code word output.

3-3 Syndrome Calculation of the Product Code with H = H) X H,

The first step of decoding is to calculate the syndrome of the sequence
to be dechég'. The syndrome calculator is similar to the main part of the

encoder. 'A syndrome calculator for the product code H = H) (X)H, 1s shown
in Fg. 3.4. -
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Reset

&l ‘
Syndrome Accumulating
Hp Adder o
Calculator &l:
ay
Reset
8 I S
g Synd.romeH Accumilating byt
2 > x
Calculator Adder "
input —— o g L, output
. Iad
. a
Reset g
se >~
Syndrome Accumilating
™ ‘ Adder >
Calculator

Fig. 3.4 An Syndrome Calculator for the Product Code H = H1®H2

The interpretation of the functions of each block or box for Fig. 3.3 is
also applicable to Fig. 3.4. The syndrome recorder is either a buffer
ceircuit to store the syndrome for future uses or a switch which sends

out the " subsyrfdromes" out of each adder in a certain proper order.

3.4 Decoding of a Product Code H = H1®H2 After Syndrome Calculation

A special feature of the product code with parity-check matrix
H= H1®H2 1s that it may be convenlently used as an error-locating
code. ILet H; and Hy be ry X n; and Tp X n, matrices respectively.
Then a whole code word of length nin, can be divided into n, subblocks,
each of length n,. The pa.rity-cﬁeck matrix Hy of the second component
code specifies the maximum detectable errors in each corrupted subblock.
The first component code parity-check matrix H) pinpoints the positions

of the erroneous subblocks without correcting the erroneous digits within

the subblocks.
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When the syndrome of any received sequence is not a vector with all
zero components or coordinates, there are some erroneous digits in the
received sequence. We will be able to locate the erroneous subblocks
from the calculated syndrome. Iet H2 be expressed as a single row

matrix, namely,

H = [Bo g’ 512,-",61"9"1]

vhere p! 1s a primitive element of GF(p). Also let H) be the parity-
check matrix expressed as elements over GF(pl) , of a t-error-correcting
code, then H = Hy ®H, is the t-subblock-error-locating code parity-check
matrix provided the mumber of erroneous digits 1n each corrupted subblock
does not exceed the error detectabllity of the second component code
with parity check matrix Hp. The reason of error-locatability is as
follows: Suppose the received co&e word is divided inmto n, subblocks
each with length ny, where n; is the code length of the first component
code and n, that of the second component code. Then any error-pattern
in any subblock which is detectable by K, wlll yleld the non-zero
element ﬁj as a syndrome. Hence if we consider each subblock as a
digit (over GF(pt)) represented by the syndrome based on Hy, the calcula-
tion of the new syndrome (based on Hy) of the sequence of n; digits
(subblocks) will pinpoint the particular digits (subblocks) in error.

Iet us now consider the case where Hy 1s a mltiple-row matrix

with elements in GF(q):



~ (2) (2) )77 r
2) . (2 (2)
H = |. =\ (3.5)
“(2) (2) (2) .
eses N .
Lhrel Pry2 Toho Brp
Hence,
—
Ly
) |
H=H ®@L =0 ®| - (3.6)
but _ -
o FHl@,hl[T
B B @ by
row space of Hy ® | . = row space of . (3.7)
y H h
-hra_ i l®| I‘2 ] .
Hence,
i =
5 ® By
5 @ by
H= . (3.8)
Hl@ hr2l -

Equation (3.8) can be obtained from Equation (3.6) ty row permutation.
Each submatrix Hy® hj for i = l,2,...,r2 can be treated as the H

matrix of the previous paragraph. It should be borne in mind that in
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the previous paragraph ,e | H2T # [0] for any detectable error pattern e |
in each subblock. In the present case it is possible that e ,hy] = [0]
for some 1 and certaln detectable error pattern ,e ;. However, there exists
at least cme i such that ;e ;hy] # [0] for any detectable error pattern

L& in each subblock. Otherwise we will have ;e , Hy = [0], which is
contradictory to the definition of detectable error pattern. We first

look at H ®& to determine how many subblocks are in error. Then we
investigate H]_@‘_h_e_’ , HJ_@&L',..., 111@::2, . Any subblock whose
error pattern is detectable by the parity-check matrix H, can be located

by at least one of the submatrices Hj(X) hy for i = 1,2,3,..., The
| —_—— |

ré.
decoding procedure is now sumarized as follows:
(1) Ccalculate the syndrome of the received code word
according to the parity-check matrix H = H) XH,.
(2) Rearrange the components of the syndrome in the
following manner
s> s', (3.9)
where

S = original syndrome

= [Sl Sa,..-',Sra Sr2+l 512_"2,..-,31_ ra,ooo,

S(zy-1)rp+l Sy -L)rpe?" ’srlre] > (320)
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and

S' = rearranged new syndrome

]
i
{

= [Sl Sr2+l 52r2+l’ eee ’S(rl-l)'r2+l
[

) P
Sp sr2+2 Sors42re e ’S(rl-l)r2+2 | oo
) 1

= [S';l S'l:a""’sf’i""’sgre] i (3.11)

where

t

Spy = [Si Sr2+i”"’s(rl-l)r2+i] (3.12)
fOI' i = 1,2,...,1‘2,

l.e., s,;i is the syndrome obtained from Hy(®) hy .

(3) Evaluate the erroneous digit positions of the first
component code with the parity-check matrix H; by
agsigning St;i's as its syndromes for all 1's.
(4) Identify the digit positions of the component code
Hl with the subblock positions of the product code.
For the case of binary product codes with parity-check matrix
ﬁ = H1®H2 , the decoding procedures become much simpler. No
rearrangement of the syndrome components is required in this case.

Iet us divide the original syndirome S in the following manner:




sr2+l Sr2+2, i ,Sr2+r2 : i

L K

S = [Sl 82"."81'2

- we

S(r{-1)rotl S(ry-1)rot2se-- ’Srlrz]

= [sal sae,....,sai,...,sarl] , (3.13)

where

Say = [S(i-l)r2+l S(i-l)r2+2"‘"S(i-l)r2+r2] for i =1,2,...,13. (3.14)
Iet us define a mapping by

Sai: O if S(i‘l)r2+k. = o for k = 1,2,000,1'2 }
1

1
Saié 1 if there exists at least one S(i—l)r2+k = (3.15)

For example, let ro = 3, r; = 7 and

? ' ' t 1 t
S=[010§000=011=1]_1:00020015000],
’

then - n

g

>0
S3== Oll- >1
7]
Spy=1111|1
SS=LOOO-:}O
Sg={001| 21

S7 =]000|30 .
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Iet SH]_ denote the syndrome obtained from S by mapping Sa.i into either
0O or 1. Treat sHl as the syndrome of the first component code.
We can then evaluate the erroneous digit positions of the first

.component code which correspond to the corrupted subblocks:

3.5 Encoding by the Generator Matrix G

It is well known that the rows of the generator matrix G of a
linear code are nothing but a set of the basis vectors of the code space.
Any code word of the code space can be expressed as a linear combination
of the basis vectors. Therefore, the encoder can be constructed as
shown in Flg. 3.5, where vy, Vpseees,Vy aTe prestored row vectors of the
generator matrix G. Gy, Gpjyees,Gy are gated amplifiers whose gains are
controlled by the input information sequence. T;, To,e«.,Ty ; are the
proper delay units so that all the prestored row vectors, each of them
miltiplied by a value depending on the input sequence, are fed simul-
taneously into the adder over GF(q). Symbolically Fig. 3.5 may be

represented as in Fig. 3.6.

Prestored Basis Gate Amplifiers
Vector
T 1)
! Vi ] > Gl. v
| N
}
| 'V‘2 | ) Gg > z - output
' . ! —
l : ! :
l ; L
Y | = .
_’.lTL. ad.der
- over
input —m— f“@_ GF(q)
(information )
1git o—
aigits) Deley Units

Fig. 3.5 Encoder with Specified Generator Matrix G
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Output
|"PUt o Encoder G ity pe
(information Dijits) ( Code Woris)

Fig. 3.6 Symbolic Representation of an Encoder with
Specified Generator Matrix G

3.6 Encoding of a Product Code with Gemerator Matrix G = G @G

Fig. 3.7 1s the encoder for a product code with generator matrix

G = Gy ® Go if the first component code is systematic. Iet

Gy = [Pl Ikl] s (3.16)

then

(7]
"

61 ®Cp = [Pl Ikl] @62

=|P2®G2 %H:@Ge]

Gy

Go

= 1P, @G (3.17)

_

RS A AP e S S G
.

Among the first k; subblocks, the information digits are distributed
evenly in each subblock and the encoder Go fills the parity-check digits
for that subblock. All the first digits of subblocks ky + 1, ky + 2,
.+e5ny - 1, n) are the parity-check digits given by encoder Gy with all
the first digits of each of the first k; subblocks as information digits.

The rest digits of each of the last n; - k; subblocks are obtained in a
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i similar manner. Therefore, the encoder shown in Fig. 3.7 is the proper .
circuit for encoding. If the first component code is not systematic,
éome rearrangement of the ordering of the switches shown in Fig. 3.7

is necessary, but the rest of the circuit will remain unchanged.

; |
| input Encoder G = - ©
| (information digits) ° Y S > output
i & 12 (code words)
Y Encoder Gl Gate
o——= Encoder G, Gate
R Encoder Gp ‘ cate l»d

Fig. 3.7 The Encoder for a Product Code with Generator
Matrix G = G X)G

3.7 Syndrome Calculation of a Product Code with G = G; (X)Gy

By Theorem 2.6 and Corollary 2.6.1 of Chapter II, the parity-check
matrix H of the product code whose generator matrix G = Gl®G2 can be
expressed as either
EICA
H= H]_®Hg (3.18)

-60-




H= oy O (3.19)

B ®1n2.

The row vectors of Equation (3.18) are linearly independent. Hence they
form a set of basis vectors of the mull space of the code space. Equation
(3.19), however, gives a form which leads to a most convenient way of
decoding the p:o&uct code. Even though the row vectors are not all
linearly independent, the union of these vectors (with overlapping of

T rows) do generate the whole mull space of the code space. The
decoding scheme discussed in this and the following sections will be

based entirely on Equation (3.19).

It can be easily seen that the syndrome calculation of

I, ®,
H= (3.20)
Hl ®In2
can be accomplished by implementing two parallel but separate syndrome
calculators, one for I.nl®H2 and the other for Hl®1n2 . The results
of Section 3.3 can be applied directly here to find the syndrome.
Fig. 3.8 shows the complete circuit for syndrome calculation. As in
Section 3.3, the inputs to the scalar multiplier, &8y 85,++.,8,, aYe

controlled by H.
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S T
Hp : ~
Calculator . o
N
o
a, P
@ SyndromeI &)
- v
Calculator A d
laput —» o2 S : w! = output
(received vector) .__—é)__, yndromeIn L = (syndrome )
Calculator 9 g_,
: (a)
* =z
a >
k) n
Syndrome
;*Qb T,
Calculator

Fig. 3.8 Syndrome Calculator for the Product Code
with G = G, (X)G,

3.8 Decoding of a Product Code G = Gy ® Gp After a Symdrome-Calculation

Iet the first component code be a t1-error-correcting code and the
second one a tp-error-correcting code. The minimum distances of the
former and the latter are assumed respectiw;ely to be 4 = Ztl + 1 and
dy = 2tp + 1. Tt can be shown” that the minimm distance d of the
product code with generator matrix G = G;(R) G, 1s equal to the product

of the minimm distances of its components.

*See Reference 2, Chapter 5 » Theorem 5.3.
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d = dydy
= (2t; + 1)(2t, + 1)
= btyt, + 2(4; + t5) + 1. (3.21)

Therefore, the product code can either detect 4t t, + 2(t; + t5) random
errors Or correct any error pattern containing Q..a'i-. = 2t1t2 +t + t2
or fevér STTOIS. .

The procedure for error detection is simple. If the output of the
syndrome calculator 1s an all-zero sequence, the received sequence is
considered error-free, otherwise there are htjty + 2(t; + tp) or fewer
errors in the sequence. An alarm may be set off or a request for
retransmission may be made if a feedback channel is availablie.

The error-correcting procedure is far more complicated. In the
cases of non-binary codes it is necessary to employ a systematic searching
technique for correcting certain error patterns. We first 1llustrate
the decoding steps for the binary product codes, to be followed by a
description of necessary modification in decoding non-binary codes.

Let Gy, H; be the generator and parity-check matrices, respectively,
of the binary code C; with k; information digits in each coda block n,.
The minimm distance of code Cy is 4y = 267 + 1, hence 1t is capable of
correcting t; random errors. Go, Hy, ky, ny, dy and t, are defined
similarly for the binary code Coe If we form the tensor product code
C whose gemerator matrix G = Gy (X)G,, by Corollary 2.6.1, we have the

parity~-check matrix
1, R
H= (3'22)

Hy ®I“2'
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As mentioned earlier, the minimum distance 1is
d = djdy = btyty + 2(%y + tp) + L. (3.23)
Hence the product code is capable of correcting
t = Qél = b1ty + B + by

random errors.

Each received code block contains njn, binary digits. It is convenient

to arrange these digits in an n; X n, array as follows:

~

a1 as ag R
fnol Sn 42 8ny+3 I
Son,+1 Son,+2 82n,+3 © o+ v 83,

ny < o . . .

rows
(1-l)nytl  B(i-1)ngr2 %(i-1n#3 ° 0 finp

L a(nl-l)n2+l &(n;-1)ny+2 B(ni-l)ny+3 * * ° #;yng
b Ve
columns

s

By investigating the parity-check matrix and the above array, it is
clear that each row of the array should satisfy the parity-check matrix
Hy of the second component code Cp and thus be a code word of Cp.

Similarly, each column of the array should be a code word of the first

component code Cl'
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The detalled decoding procedure is as follows:

Step 1

Step 3

Arrange the recelved sequence in an array as

shown in the previous paragraph.

Correct errors in each row by the parity-check

matrix Hy.

Correct errors in each column by the parity-check

Correct the remaining errors again in each row

by the parity-check matrix Hy.

Feed the corrected sequence into the syndrome
calculator. If the new syndrome 1s an all zero

sequence, go to Step 6; otherwise go to Step 7.

Compare the received sequence with the corrected
sequence. If the number of errors corrected is less
than or equal to t = 2tlt2 +t; + tz, the procedure
is completed and the errors are assumed to have been

corrected; otherwise go to Step 7.

Repeat Steps 2 - 6, but perform column checks
before row checks, then column checks agéin.

If the test of Step 6 is satisfied, then all
the errors are assumed to have been corrected;

otherwise go to Step 8.
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Use Hy and Hy respectively as the parity-check
matrices of 2t) - and 2t, - error detecting codes

to detect all the rows and columns which are in

error.

Step 9
Complement all the digits at the intersections
of the erroneous rows and columns. Then repeat
Steps 2 to 7. Compare the corrected sequence
with the received sequence. If the number of
errors is less than t, stop the procedure;
otherwise go to Step 10.

Step 10

Auxiliary decoding schemes are necessary to correct
all the error patterns which are not corrigible by
the procedure of the previous 9 steps. These
should be designed according to certain properties
of the code. These error patterns which are, in
general, a very small fraction of the total number
of the corrigible error patterns.

It is convenient to explain the reasons behind the above 10 steps
by an example. Let t; = ty = 2, then t = 2t1ty + t) + tp = 12. The
following cases are handled separately.

(1) If the number of errors in each row and each column
is always less than 3, then either the row checks
or the column checks are sufficient to correct

all the errors. Hence this is a trivial case.
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(11) The error pattern of 12 errors is of the form:

X X
X X

X X X
X

(ty = 2, or fewer rows contain more than t, = 2 errors).
Applying row checks, we may "transform" the error

pattern to the form shown in the following:

where /A denotes the position where an error is
corrected by the row checks, and /A denotes the
position where an extra error is introduced by
the wrong correction based on the row checks.

Applying column checks next, we obtain
OO0 O

A A
A A

OOoO0OQg
A

which completes the correction of all 12 errors.

67~




(1ii1) The error pattern of 12 errors is of the form

X X X X
X
X X X ,
(tp =2, or fewer columns contain more than

tp =2 errors). Applying row checks, we have

[ﬁ§ X X X g'
A A x X X X

A

Applying column checks, we have

@ x O 0O x
@ [ x O x O
I\
A i X . X
X X Py

Applying row checks again, we obtain

()
mOoD00aao
BEO 000
JAN
@@ o O
©

which completes the correct;on of all 12 errors.
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(iv) The error pattern is of the form

X X

(t2 = 2, or fever colums contain more than t, = 2

errors). Applying row checks, we have

& X X X X
X & X X &
x B x
A A
Applying column checks, we have

M XNXX
A x x x x
x A x x A
x x A A& x

A A

We then count the "corrected" errors. There are 16 in mumber, hence
we know that this is not the right error pattern. The correcting procedure

is started all over again with column checks first as:



Original error pattern

X X X
X X X
X X
Column checks
x O O x
OxO O©
[ x X
X {
Row checks
AO OA
DaldOdesa
O A A
AN A
A A

which succeeds in correcting all 12 errors.

The error pattern (of 12 errors) is of the form

X X X

X X X

X X X
X X X

Apply either row checks first or column checks first.

The "corrected" sequence will differ from the
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(1iv)

original recelved sequence for more than 12 positions.
Therefore, we go to Step 8 and detect all the rows
and columms which are in error. By counting them,

we know that there are four rows and four columns in
error. According to Step 9, we complement all the
digits at the intersections of the erroneous rows

and columns. The new error pattern becomes

where ' denctes the position which was in error
before complementing. It is evident that the
complemented errors can be easily corrected by
either row or column checks.

The only error patterns which cannot be corrected
by Steps 2 through 9, are some permutations of

columns and/or rows of the following two patterms:

X X X X X X
X X X X X X
X X X X X X
X X X X
X
X1 o
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The pattern on the right is obtained from that
on the left by a 90° rotation. Hence, only the
left-hand side pattern needs to be considered in
the following discussion.
It should be noted that, for this error pattern, the complements
of the digits at the intersections of erroneous rows and columns form a

mirror image of the original error pattern as follows:

Original Pattern Complemented Pattern
X X X b‘X X X
X X X X X X
X X X X X X
X X X X X X

The method of complimentation fails due to the fact that there are an equal
number of correct and erroneous digits at the intersections of those rows
and columns. Therefore, it is necessary to break this "balanced" situation
of correct and incorrect positions. One way of doing it is to change an
0dd number of aribtrarily chosen digits among these intersections. Then
the number of correct digits and that of erroneous digits will differ at
least by one. ILet us take the smallest odd number, 1, and proceed with

the correction procedure as follows:

The original pattern 1s repeated here for reference.

X X X
X X X
X X X




If the assumed single error is among one of the erroneous digits,
then the new pattern is

X X X
X X X
X X

X X X

where | | denotes the original erronecus position which was corrected by
the trial-and-error method. The above pattern can be easily corrected by
applying column checks first, followed by the row checks.

If the assumed single error is not among one of the erroneous digits,

then an additional error is introduced, the new pattern becomes

X X X
X X X
X X X

where {X| is the newly introduced error by the method of trial-and-error.
Because of this additional error, any row checks and column checks cannot
completely correct the error pattern, no matter which one is applied first.

We then complement the whole matrix and obtain the new pattern as follows:

X X X
X X
X X X
X X X .
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This error pattern can be corrected easlily by applying column checks
followed by row checks.

At the end of each correcting procedure we should count the number of
positions changed to vindicate whether the corrected "errors" are real
errors. Suppose there are e errors in a received sequence and e < t.
It 1s well known that the minimum distance d of a t-error-correctiné
code is given by 4 2 2t + 1. Hence in dealing with a received sequence
with e errors, two possible situation may occur: we may either correct
all the errors, or add some other erroneous dlgits together with the
original recelved errors to form a code word which satisfies both the
row checks and the column checks. In order to form a code word which 1s
d or more digits distant from the true code word, a welght of no less
than d-e(2 t+l) must be added to the original error pattern. Therefore,
at the end of each correction procedure, if it is found that the number
of errors corrected 1s less than t, the corrected code word is the true
code word. An alternate decoding scheme should be used if this number
exceeds t.

In Steps 8 and 9, we have assumed that among the possibly erroneous
positions, either more than half are in error, or the pattern of the
correct positions is such that if it were an error pattern it could be
easlly corrected by the row and column checks. Hence, after detecting
the error locations, we take the complement of these possibly erroneous
digits and proceed to correct a;l the errors in the complemented pattern
of the original errors.

The auxiliary decoding scheme cited in Step 10 and the illustration in

the example varies from code to code depending upon some special properties
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of the codes and the error patterns.

It should be noted that Steps 8 and 9 do not apply to non-binary
codes. Complementing in a non-binary field will not, in general,
eliminate the original error pattern but will introduce new errors.

Hence either a trial-and-error technique should be used, or a new auxiliary
decoding scheme should be adopted for the non-binary codes.

The main advantage of the tensor product code is that one may employ
the error-correction capabilities of the component codes to correct the
errors in the product space. The design involved in the repetitive proce-
dure of the component code is usually simpler than that required to correct
a larger nmumber of errors by means of a single code. Take as an example
the product code C (49,16), which is a tensor product of two cyclic (7,4)
codes C; and Cp. The (49,16) code is capable of correcting U errors.

Were it not a product code, a single k4 error-correction code would require
solving 4 simltaneous equations in a binary extension field. Now, as a
product code, it requires only the application of single error-correcting
procedure to rows and columns of 7 digits each which does not involve the
calculation in any of the extension fields. A saving in the decoding

procedure results.

3.9 Encoding of a Product Code with Parity-Check Matrix H = [, (RBy,],

Since H = [B);(®Hy ], is a p-ary representation of [Hyo(R Hp,l;
the syndrome obtailned from H should be the syndroame derivable from
[H;(®Epq] by proper translation from GF(q) to GF(p).

Because of the complexity of the decoding procedure in higher

extension fields, we shall assume that Haq is a lX n, matrix. The
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encoding procedure can be described as follows:

(1)
(11)

(111)

(1v)

(v)

Fill the checking digit positions with zeros.
Divide the entire sequence, including the
information digits and the all-zero checking
digits, into n; subblocks with n, digits in
each subblocks.

Separately feed each subblock into a syndrome
calculator with parity-check matrix [H2q]p‘
Interpret the syndrome of each subblock as a
qg-ary digit. Then feed these n; q-ary digits
into a syndrome calculator with parity-check

matrix qu.

- Interpret the syndrome output of the calculator

with matrix qu in terms of its p-ary representation.
Then add the p-ary representation of each q-ary
digit to its corresponding positions which were

filled with zeros before.

The encoding circuit is shown in Fig. 3.9.

input

(information
digits)

Syndrcnne p-ary Syndrome q-ary
_|calculator to Balculator to
[ ] Q.'a-ry H p-ary |
Haq P Converter 1q Converter
- Buffer output

(code words)

Fig. 3.9 Encoder for the Product Code with H = [qu® ng]p
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3.10 Decoding of a Product Code with Parity-Check Matrix H = [qu®32q]p

The syndrome calculator of a product code is very similar to the

encoder of the code. Fig. 3.10 is a block diagram of the syndrome

calculator
Syndrome p-ary Syndrome
{nput Calculator to Calculator | output
§: 599 | ety H
(received q'p Convertor 1q (syndrome)
vector)

Fig. 3.10 Syndrome Calculator for the Product Code
vith § = I8, ®H, 1,

The output of the syndrome calculator should be given as vectors with
components in GF(q). With this syndrome, we determine the location of
erroneous subblocks. In locating the errors, we go through the error
correcting procedure for the g-ary component code with parity-check
matrix qu up to the point of determining the error location. It 1s
not necessary to evaluate the exact error pattern within each erroneous

subblock, since the product code is employed as an error-locating code.

3.11 Remarks

Iet us first compare the decoding procedure of a product code
whose parity-check matrix is H = H) (X)H, with that of a product code
specified by the parity-check matrix H' = [qu® qu]p in the following

table:



Parity-Check Matrix H, ®H, (£, ®H,,]

a’p
Number of rows of P 1 in q-ary expanded
second parity-check to p in p-ary
matrix
Data transmission rate Lower Higher
Total number of code
words Smaller Larger
Flelds translation No Yes
Jmplementation Iess complex More complex

The choice of produce codes with H = B} (D H, and H = [B; R, 1,
depends on the complexity of circuits allowed and the number of code
words required. For the same code word length and same redundancy,
one has to pay the price of employing more complicated circuits in
order to have a larger code word space.

In the previous sections, we have considered the product code whose
parity-check matrix is the tensor product of the check matrices of two
component codes as an error-locating code. However, the code can also
achleve some other functions. ILet the first component code have a
minimum distance of d; = 2t; + 1. It is capable of correcting t; or
fewer random or indépendent errors. let the minimum distance of the
second component code be do = 2t, + 1. Then the product code is
capable of performing any one of the following functions.

| (1)  Detecting min(2t;, 2t,) random errors.
(11) Correcting min(t;, t,) random errors.
(111) Detecting 2t; corrupted subblocks, each of

which containing no more than 2t2 errors.
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(iv) Locating t; corrupted subblocks, each of
which containing no more than 21;2 erxrors.
(v) Correcting t; corrupted subblocks, each of
which contains no more than t,.errors. ..
It should be noted that the product code of the type H = H;(X)H, as well as

that of the type E' = [H; (®H,,], can perform any one of the above 5 functions.

The bounds given in (1) and (11) are due to the fact that the minimm
distance d of this product code H = Hy(X)Hp is min(d;, dy), a property to
be further examined in Chapter 6. It is evident that this kind of produt;t
code is not particularly suited for random-error correction or random-error.
detection because of its relatively small minimmm distance. It seems that
the minimm distance 1s not always the best criterion for judging the utility
of a code because there are occasions when the :knowledge about the relation
betweén the error patterns and the subblock structures is important.

The product code whose generator matrix is the tensor product of
the generator matrices of its component codes has also an interesting
alternative error-control capability. Since the parity-check matrix of
this product code is given as
H ®In2
In1®32 ’

H=

the upper submatrix H1®I.n2 can be considered as the parity-check matrix
which is capable of locating t, subblocks (assuming H; is the parity-

check matrix of a t;-error-correcting code) with each of them containing




no more than np-1 errors. This is due to the fact that II12 is the parity-

check matrix of & code whose minimum distance 1s no. The lower submatrix

nl"l

Inl®H2 is capable of locating up to corrupted subblocks, each
containing no more than 21:2 errors (assuming H2 is the parity-check matrix
of a 2t2-error-detecting code). Therefore, we can employ this product code
to locate errors distributed in the following two ways:

(1) Errors are clustered in no more than t; random

subblocks with at least one correct digit in

each.

n,~1
(11) Errors are distributed in 12 subblocks,

each containing no more than 21:2 exrrors.

Hl@’InQ and Inl®H2 can be considered as the parity-check matrices
of the codes whose functions are listed under the discussion of error-

locating codes of this section. A meaningful combination of them is that

the product code is capable of

-1
(1) correcting t; subblocks containing n22 or

fewer errors,

(11) loceting nle-l subblocks containing 2t, or fewer
errors.
Another useful application of the product code specified by
G = Gl®62 over GF(q) is to correct, by simple procedures described in
Section 3.8, Step 1 - 8, all the following four kinds of, error patterns:
(1) fewer than t, + 1 errors in each row,
(11) fewer than t; + 1 errors in each column,

(1i1) no more than t; rows contain more than ty errors,
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(iv) no more than t, columns contain more than t, errors.
The receiver will ask for retransmission or locate the errors whenever the
error patterns do not belong to any of the above four categories. It
should be noted that the above four kinds of error patterns occupy a

very large fraction of total corrigible error patterns.
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CHAPTER k4
IMPLEMENTING PRODUCT CODES WITH DUAL CYCLIC COMPONENT CODES

The ease with which cyclic codes can be implemented and the results
of the last chapter showing that the encoding and decoding of a product
code can be decomposed into those of its component codes lead to the
conclusion that product codes with cyclic component codes should be
relatively easy to realize. This chapter is devoted to studylng the
implementation of the encoders and syndrome calculators of the product
codes with cyclic component codes. A cyclic decoding scheme of the
cyclic codes after obtaining the syndromes will be discussed 1in Chapter 5.

First, the implementation of cyelic codes by shift-registers is
reviewed, then dual cyclic codes are studied. Next, the encodlng and
syndrome calculations of product codes with cyclic component codes are
shown. Finally, the problem of implementing product codes with dual
cyclic component codes is investigated. The high degree of flexibility
in redundancy possessed by the product codes with dual component codes
is very attractive in applications such as space-vehicle-to-ground

communications.

k.1 Cyeclic Codes®

A subspace V of n-tuples over GF(q) is called a cyclic subspace
or a cyclic code if for each vector _f = (ap, 81,-++, 8p-1) 1n V,
the vector f' = (ap.1, 89, 81s+e+, 8y.5) Obtained by shifting the
components of | £ , cyclically one unit to the right 1s also in V.
Corresponding to each n-tuple (ap, @1,..., ay.1) there is a polynomial

ag + 81X + «.. + 8,7¥%"%, mod xP-1.

of degree less than n, f(x)
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Let g(x) be a monic polynomial® of degree r which divides x°-1. Then an
n-tuple is a code word of the éyclic code V if and only if its corresponding
polynomial f£(x) is divisible by g(x). A cyclic code is, therefore,
specified completely by a polynomial g(x) that divides x®-1, and it is

said that the cyclic code is generated by g(x). Alternately, the code

can be specified by its recursion polymomial h(x) = (x®-1)/g(x).

L.2 Encoding for a Systematic (n,k) Cyclic Code™

Encoding for the systematic (n,k) cyclic code generated by g(x),
a polynomial of degree n-k, can be accomplished by using a device called
a shift-register generator as shown in Fig. 4.1, with connections

corresponding to

h(x) = (x"-1)/g(x) = ho + hyx + hox® + «vu + by ox¥2 4 by x5 L 4 XK,

€9 0 @ Ga“te

apat
Output < Topel
) (1.-§omaflun
(Cade Words 'D?’-'fs y

é adder @Scalar ‘mu'tfher R R a Sb?ft- fe(i'-der
)

-for malti F‘ym by a ${aje

Fig. 4.1 A shift-Register Generator for Encoding the (n,k) Code
Employing k Shift-Register Stages

*A polynomial f(x) is called monic if the coefficient of the highest
power of x is 1.

**Peterson® Chapter 7.
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The gate is open during the period of feeding in the k information digits.
The device is made to shift n times immediately after all the information
digits are fed in. The gate is closed during the first n-k shifts, then
opened again for the last k shifts in order to clear out all the shift-
registers. The first k. symbols to come out will be the information
symbols, and the last n-k symbols will be a set of check symbols that
make the whole n-tuple a code vector. TFig. 4.2 is a modification of

Fig. 4.1 in which the constant delay of k diglts is eliminated.

+ > ---
~h, -h, -h,
L-Fut 2 Ou'tput
(In{orma‘ﬁan \ o Ii (Code Words)
Daj:ts)

Fig. 4.2 An Encoder for the *n,k) Cyclic Code Employing k
Shift-Register Stages

The gate is open for the first k shifts, and closed for the last n-k

shifts. The switch k is at position 1 for the first k shifts then set

to position 2 for the last n-k checking symbols.

-8l -




Example
For the (7,4) binary code, g(x) = 1 + x + x3 and
h(x) = (x7+l)/g(x) =1l4+x+x° + xh. The shift-

register shown in Fig. 4.3 can be used for encoding.

+
I&ateI
:——1 Output

I"‘PUt o ((od-a Ul)ord)
(Informaﬁon 'D;s;fs) o j

Fig. 4.3 Shift-Register for Encoding the (7,L4) Code

Iet f5(x) be a polynomial in which the k coefficients of terms involving
21 , xB-2 s eoes 2 are arbitrary information symbols, and the
coefficients of terms of degree less than n-k are O. This corresponds
to a vector for which the first n-k components are O. The last k
components are arbitrary information symbols. Then by the division
algorithm:

To(x) = g(x) alx) + r(x), (4.1)
where r(x) has degree less than n-k, the degree of g(x). Then

folx) - r(x) = g(x) alx). (k.2)

Hence the n-tuple corresponding to fp(x) - r(x) is a code vector for
which the first n-k components are checking digits, the last k components

arbitrary information symbols. Therefore, the encoding for an (n,k) code
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can also be achieved by a divider shown in Fig. 4.k, with connections

corresponding to g(x) = gy + g% + ++« gn_k_lxn'k‘l + x-k,

@ -9, e 3., Gate
© : D> --- : -
Input
( i 20K Outpit
Information ' g
Dij:fs) = BUffer‘ - (Coda \/JOP‘C{ )

Fig. 4.4 A Divider as the Encoder for a Cyclic (n,k) Code
Employing n-k Shift-Registers

The input sequence is fed into both the divider and the buffer which

is used to store the sequence for a duration of n-k units of time. The
gate is originally open and closes when all the information digits are

fed into the divider. It opens again n-k shifts after the last information
digit is sent into the divider so that all the storage units in the

divider will be cleared out and they be ready for a new information
sequence. The output takes information digits from the buffer and

checking digits from the divider. The buffer of Fig. 4.4 can be removed

by multiplying the information sequence by the factor xn_k before feeding
it into the divider. This can be achieved by introducing the information
)th

sequence at the output of the (n-k shift register, as shown in Fig. k.5,
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PInk:

@ Gate

£

Input f " ’

(1ot - 2 Output
In ormation | rO—P‘
'D“j:fs) - TK (Code Word )

Fig. 4.5 A Divider as the Encoder for a Cyclic (n,k) Code
Without Buffer Stage

The gate is closed during the feeding in of information digits. It is

opened immediately after all the information digits have been fed into

the divider. In this chapter, for the purpose of faciliating the

implementation of dual codes, an equivalent circuit of Fig. 4.5 is

used as the encoder for the (n,k) code which is shown in Fig. L.6.

Iﬂ Pdt

Y
)

Gate

Y

(Infm’m&-

‘t;dn V

D.‘11‘fs)

-1
% o

. T (Code word)

Fig. 4.6 An Equivalent Circuit for Fig. 4.5

-87-~




The gate is closed during the first k digits and open for the last n-k

digits.
Example
For the (7,4) binary cyclic code, g(x) = 1 + x + x93,
the encoding circuit styled after Fig. 4.6 is shown
in Fig. 4.7.
+ ~(F)— >
e
t
Infut ) Gate
> 2 QOutput
( Information 1 ‘
'D.'jits) (Code Word )

Fig. 4.7 An Encoder for (7,4) Code

4.3 Syndrome Calculating for a Systematic (n,k) Cyclic Code

Let \r,= (ro, r1, ro,..., r,_1) be a received vector. The

corresponding polynomial r(x) for ,r , is

I‘(X) = rn_lxn-l + rn_2xn-2 + eee + rn-kxn_k + oo + r2X2 + rlx + I‘O .

Let n-k

n-1 n-2
+ Iy oX + oo + TpoX

fo(x) = I‘n_lx

be the polynomial whose first k coefficients are identical to those of

r(x) and whose last n-k coefficients are zeros. Then

folx) = a(x) g(x) + r'(x), (k.3)

where g(x) is the generator polynomial of degree n-k for an (n,k) cyelic
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code, q(x) is the quotient polynomial, and r'(x) is the remainder whose

degree is < n-k. It can be easily seen that
f(x) = folx) - r'(x) (b.4)

is a polynomial whose first k coefficients are identical to r{x), thus
the corresponding vector £, of f(x) is a code word. It can also be

shown that the syndrome g, for the received vector T, is given as

- £, (k.5)

.,s,OO cne O‘=L_x;‘

or in polynomial form
s(x) = r(x) - £(x). (4.6)

Hence the encoder shown in Fig. 4.1 can be modified to be the syndrome

calculator as shown in Fig. 4.8..

® ®

@ @ Gate |

Gate 2
J . A
Input Outpu,t
Gale 3 F——
(Rei/e‘.v;d ) Buffer (S/vndrc)me)
eclor

Fig. 4.8 A Syndrome Calculator for an (n,k) Cyclic Code,
a Modification of Fig. 4.1
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Gate 1 is opened for the first k digits, closed for the next n-k digits,
then opened again for the last k digits. Gate 2 is closed for the first
k digits and opened for the rest of the n digits. The buffer serves to
delay the input for k digits. The first k digits of the input sequence
LT, are fed into the encoder to generate the code word ,f , . This is
then subtracted from the input sequence _r 6 to form 8+ Here the
first k zero components are deleted by the action of gate 3.

Since the first k digits of r(x) and those of f(x) are identical,
we can ignore them completely without going through the trouble of
subtracting the latter from the former. Hence Fig. 4.8 can be simplified

further as shown in Fig. 4.9.

3 & @ E
...... - ] l <<%?
- ¥ Output

( Syndrome)

Input

(Received Vector) *1

Fig. 4.9 An Equivalent Circuit for Fig. L.8

The gate in Fig. 4.9 is the same as Gate 1 in Fig. 4.8. Switch K is at
position 1 for the first k digits and at position 2 for the next n-k

digits, and no buffer is required.
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Iet the polynomial r(x) corresponding to the received sequence , Ir |
be split as follows:
r(x) = £5(x) + ry(x),
where
fo(x) = rn-lxn-l 'l' rn_zxn-z + e e + I‘n..kxn-k 2
and k-1
ro(X) = rn_k_lxn- o+ rn_k_zxn-k-a + eeo + rlx + I’O .
Then
r(x) folx) | rp(x)
= + »
glx) ealx) alx)
where the degree rp(x) < degree g(x).
Tet
£o(x) = q5(x) g(x) + r'(x).
It can be shown that the syndrome is
s(x) = r'(x) + ry(x).

Therefore , Fig. k.6 can be modified to be the syndrome calculator as
shown in Fig. 4.10. Switch K is at position 1 for the first k digit,
then is shifted to position 2 for the last n-k digits. Gate 1 is
closed for the first k digits only, and Gate 2 is closed for the last
n-k digits only.

Since the encoder and the syndrome calculator of a systematic
(n,k) cyclic code can be implemented by shift-registers with connections
corresponding to either its generator polynomial g(x) or its recursion
polynomial h(x), it is possible to implement the encoding and syndrome

calculation for a cyclic code by a circuit and its dual. This will be
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the subject of discussion in the next section.

y
Gate I

In Iaut

(ﬁeceiuz’AK

Output
Ve dor)

( S)mc‘ rome )

Fig. 4.10 Syndrome Calculator Obtained by Modifying Fig. L.6

k.4 Cyclic Dual Codes as Variable Redundancy Codes™

Let g(x) of degree n-k be the generator polynomial of an (n,k) cyclic
code C and h(x) = (x™-1)/g(x) be the recursion polynomial. Then the code
C' with generator polynomial h(x) and recursion polynomial g(x) is called
the dual code of code C. Or code C and code C' are dual to each other.

By combining Figs. 4.1, 4.6, 4.9, and 4.10, we are able to implement
a circuit which is an (n,k) cyclic code at one time and the dual of the
(n,k) code or a (n,n-k) code at another time if a mode-chainging signal
is given. Since the redundancy of the two modes is different we may use
dual codes as variable redundancy codes. Fig. 4.1l shows the encoding
and syndrome-calculating circuit for the variable redundancy code. The

timing for the switches is listed as follows:

¥See Tang, Reference k.




Mode 1: The code is generated by g(x)

Encoder
Time ot o xr” 1 N
Switch sition
Ky a a
K> 1 2
K3 1 2
Kl; a a

Syndrome Calculator

Time OF + tp > KI™ + tp | KT* + tp > 0T + tp
SvttonPosEion
Kg a a
K, 1 2
Xy 1 2
Ko 2 1
Ki1 a a

where T is the digit durationm,

1T 15 the beginning time of the 1B gigit,
1T" is the instant just before the beginning time of the i'R aigit,
and tp 1s the delay time required to transmit the signal from the encoder

to the syndrome calculator.
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. |
® 1y -9. -3 -9,
~N
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e 3!
6 o
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Fig. 4.11 Encoder and Syndrome Calculator for Dual Cyclic Codes
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Mode 2: The code is generated by h(x)

Encoder
ime ot - k- jiviad nT~
Switch \ FPosition
K b
Ké 2
Kﬂ b
KS 1

Syndrome Calculator

\T{ of + tp - XI™ + tp
Switch \\Position

KT+ tp - 0T+t

ks b b
Kg 1 2
Xg 2 1
K, b b

Fig. 4.11 can be represented in block diagram menner by Fig. 4.12.

Input a ) A
( In fq\'maf:cn o—1 Ln C Odef'
"Dit“.-h, ) b

a

=

L >l Channel

s

.

Y a

o— S-jndl‘omé.

10— Calwx|ator

-—ﬁg Oitpdf 7
-_ob ( S\(ncimme)

Fig. 4.12 A Block Diagram Representation of Fig. 4.11
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When all the switches are at position a, the system is in mode 1. In
this case the polynomial g(x) is the generator polynomial of the code.
When all the switches are at position b, the system is in mode 2. The
code is now generated by the polynomial h(x) = (x%-1)/g(x).

4.5 Encoding of a Cyclic - Component Product Code with Parity-Check
Matrix H = H) @ Ho

-1 4 x¥1 be the

Let gl(x) =gy + 81X + g12x2 +oeee + gl(rl-l)xrl

generator polynomial of the first cyclic component code C, with parity
check matrix Hy. Let ga(x) = 8o + BogX * ees + gz(rQ_l)xr2'l +x2
be the second cyclic component code Co with check matrix Hy. Then
Fig. 3.3 of Chapter 3 can be replaced by Fig. 4.13. It should be noted
that the accumilating adders over GF(q) do not appear in Fig. 4.13, since
their functions are performed by the dividers. Each divider has a period
of no, the length of the second component. Therefore, whatever is appearing
at the shift-registers now will reappear n, shifts later provided there is
no input. In the case of an input, what appear at the shift-registers n,
shifts later is their original content plus the shifted version of the input
which arrived in the interval of n, shifts, since the circuit is linear.
The gate of each divider is always closed except during the interval when
the remainder is shifted out to become the check digits. The multiplier
controlling signals aj, a2,...,_ar2 are the outputs taken at proper points
shown in Fig. 4.14% with (1,0,0,...,0) as the initial state, where

* *

* - L% ri-1
gl(x) 8o+ B X+ eee ¥ gl(rl-l)x

+ x"1 is the reciprocal poly-

nomial of g)(x). It should be noted that the clock frequency of Fig. k.1l
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A

Fig. L4.13 Encoder for the Cyclic-Component Product Code with
Parity-Check Matrix H = ) @ Hy

S is at 1 for the duration of information digits, at 2 for the

duration of check digits.




is 1/n, of the clock frequency of Fig. 4.13. Fig. 4.1k can be replaced

by other storage devices or timing circuits.

>

@ @ @ 6

LT Jp@d{Op@~-~{0}+® Ol

Fig. 4.14 Multiplier Controlling Signals

As far as economy of the circuitry is concerned, Fig. 4.13 is best
for encoding the cyclic-component product code with parity-check matrix
H= Hl()Igz, since no buffer stages and no accumulating adder over GF(q)
are required, and there is no delay. But, unfortunately the flexibility
of code word redundancy of a product code using Fig. 4.13 as encoder 1is
limited. We can only change the first component code with parity-check
matrix Hy by varying the number of multipliers ry, whereas we can do
nothing about the second component code with parity-check matrix H2.
Therefore, we shall develop some alternative encoding circuits for

use in later sections, such as those shown in Figs. L4.15 and 4.16.




r»O‘)'K i Actumuh{.’nf L
= Adder

J K % Aaumulaﬁu,
z Adder

A
Inf’it - Gate l
(1nform.
tion "
'D;j‘.ts) .
. ‘.
Y .
° Y
W ‘ > t : K AchmA,,aﬁj
~ YT ® 2 é Adder

a v '320 - 330 @ [ A
‘ Gale . Out put
S o Pu
'

e -~ - -] ((OJQ Word)

Fig. 4.15 An Encoder for the Cyclic-Component Code with
Parity-Check Matrix H = H) ®H,

K's are at position 1 for the first ks digits for each subblock and
at position 2 for the last n, - ks digits. S is at position 1 for

information digits and position 2 for check digits.
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Fig. 4.16 An Encoder for the Cyclic-Component Code
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with Parity-Check Matrix H =

Timing for K's and S are specified in Fig. L.15.
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There are several ways to implement the accumilating adders over
GF(q) shown in Figs. L4.15 and 4.16. Since shift-registers are widely
used for the encoding and decoding circuits for the cyclic codes,

Fig. 4.17 suggests a way to achieve the accumilating adder by employing
shift-registers. mg, my, ..., mra—l’ and 1 are coefficients of a
polynomial m(x) = mg + my + mox2 + ... + mrz__lxrl-l +x L which
generates a recursive sequence of period no. Switch k is at position
2 most of the time except while output is being taken from the adder.
It can be easily seen that if the input sequences at to, and tg + noT
are (ag, 81, 85, s, a'rz-l) and (by, by, Doy eee, bra-l) respectively
then at tgy + 2n,T the output sequence should be

(ao +bo, al +bl, ssey 8.1,2_1 +b l) ’

r2-
where T is the time required for each shift. The polynomial m(x) may
be the generator polynomial gz(x) of the second component code, but so
far as the economy of circuitry is concerned, m(x) should be the poly-
nomial of degree n-k with minimum number of non-zero coefficients which

generates a recursive sequence of period np.

@ L Gate

SN IR NS o

-~ Odirut

Fig. 4.17 An Accumulating Adder Over GF(q)
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4.6 Syndrome Calculation of a Cyclic-Component Product Code with
Parity-Check Matrix H = H; & Hp

Figs. 4.13, 4.15 and 4.16 can be modified to serve as syndrome
calculators of the cyclic-component product code with parity-check matrix
H = H) @ Hy. The modified circults are shown in Figs. L4.18, 4.19 and 4.20

respectively.

-320 - 32,1 @ -jz £ Gate

i @ @ @ % Gate

Inpdt i : ’
—_—t [ ]

(Re(e?lled

Vec*or)

Gate

¥
A0
-
=

a,

! (>~ ----- - + +

Fig. 4.18 Syndrome Calculator Corresponding to the
Encoder of Fig. 4.13

BN

The gate of each divider is open only when the remainder of that

particular divider is shifting out as output,
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a,

Accumulaﬁ'j _
Adder |
A
|
{
'K Accumdlaf "
“ o_%_— j
Inru‘t 2' Adder
—_— y
{Received G&te
vedor) ‘
V . : Outrut
¢ ) : . ‘f/ ( SynJrou:)
a, |

' % A((umu'at:"
2 Adder

Fig. 4.19 Syndrome Calculator Corresponding to the Encoder of
Fig. 4.15. Timing for the Switches and Gates is the
same as that of Fig. L.15.

Switches K are at position 1 for the first ky digits of each subblock

of length npo and at position k the rest of time. The gate of each divider
is open only when the remainder of that particular divider is shifting out
as output.
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Gate

+4.

Accumu‘&t;nj
Adder

Accumula't-‘nj
I“F“t ! Adder

t———

&eceived : { g_‘_
Vector)

4 P Out‘;ut

. (Syndrome)

Gate

Accumla‘t:"ﬂ
Adder

Fig. 4.20 Syndrome Calculator Corresponding to the Encoder of Fig. 4.16
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4.7 Encoding of a Cyclic-Component Product Code with Generator Matrix
G =6 &6,

Fig. 3.7 can be replaced by Fig. 4.21 for the case of cyclic-component

codes. Two equivalent circuits are shown in Figs. L.22 and 4.23. The

generator matrix is G = G; PGy -

Iy

“Jao '32l

+ B

Taput ( Information Digits)

—

A

K
L @ 'U ‘

=<
:

-

———- e

Y

vo © ¢ |
L oo

P
>

Fig. 4.21 Encoder for a Cyclic-Component Product Code with Generator
Matrix G = G1 @ Gp
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Input

(Morma’am
Diq i)

D > O~ T L ot
Q ‘T o or
@ @ @ j of ! (Code Word)

Fig. 4.22 An Equivalent Circuit of Fig. k4.21
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Inrut (Infarmafl‘on ]);1‘-{.5)

Fig. 4.23 Another Equivalent Circuit of Fig. 4.21
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Another alternative of implementing the cyclic-component code with generator

matrix G = G @ Gp is shown in Fig. h.2k.

Buffer

Bu‘”el‘ —h@——

2 E Oatput
(Code Word)

51 .
InPut . s
(Infor- - .-'
wation f
D.‘j‘.ts)
+
'jz.o

Fig. 4.24 Another Alternative Encoder for the Cyclic-Component Product
Code with Generator Matrix G = G & Gp
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There are k) encoders connected according to go(x), the generator poly-
nomial of the second component code. The output of each encoder is
stored in a buffer stage or a repeater so that the sequence out of the
second component encoder is repeated ny times. For the first no digits,
(a1, ap, «.., akl)T is the last column of Gy while for the second no
digits, (a;, By sens a.kl)T takes the value of the (nl-].)th column of

Go, etc. An equivalent circuit of Fig. 4.2k is shown in Fig. L.25.

O,

“}-4-

In‘mt : . (( 0&2 WOfJ)
(1-{«-»3( J .
'h.o" .
N e
Y 'hzo ~hyy
N m,q%a
F.

Fig. 4.25 An Equivalent Circuit of Fig. 4.24
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4.8 gsyndrome Calculation of a Cyclic-Component Product Code with
Generator Matrix G = G @ Go

Let | r, be a received nyny-tuple and (f , be the code vector whose

information digits are identical to those in r, . Then

where | s' is the vector obtained by complementing the syndrome .8, with
zeros at information positions. Hence the syndrome of the cyclic-component
product code with generator matrix G = Gy ®G2 can be calculated by the
circuit shown in Fig. L4.26., The switch K is at position 1 when check
digits are fed in and at position 2 when information digits are fed in.

Any circuit shown in Figs. L4.21, L4.22, 4.23, 4.24 and 4.25 can be used as

the check digit calculator in Fig. L4.26.

Input - ){ Oulput

0~ ~+ >

(Received VE(J’or') 2 (Syndrome)

Check "D:g:ts

Calculator

Fig. L.26 Syndrome Calculator of the Cyclic-Component Code
with Generator Matrix G = Gy ® Gy

Usually, it i1s more convenient to have the syndrome given as in

Equation (4.15). It can be shown that the syndrome shown in

Inl ® H2

B8,= . r H =,r,|:
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can be obtained from the output of Fig. %.26 by passing it through a
linear circuit whose output vector components are linear combinations
of those of the input vector. We may consider this linear transform
circuit as part of the decoding circuit after syndrome calculation.

From the discuss:l.on of the previous sec‘pions in this chapter, we
know that the circuit of a cyclic-component product encoder is quite
simllar to that of 1ts syndrome calculator. Therefore, in the following
sections of this chapter, we discuss only the encoder of a cyclic-
component product code. But the resulis are also valid for the syndrome

calculator.

k.9 Encoding of Cyclic-Component Product Codes Specified by H = H; X)H,
with Dual Component Codes

Let Cy be the systematic cyclic code of length n; generated by the
polynomial gl(x) of degree n) - k;. Then the dual code C; of C, is
genersted by the polynomial b (x) = (x'L - 1)/g, (x) which 1s of degree
ki Similarly, let Co be the systematic cyclic code :of length n,
generated by the polynomial go(x) of degree n, - k5 « Then the dual
code C3 of C, is generated by the polynomial h,(x) = (xn2 - l)/ge(x)
which is of degree ks. ILet the parity-check matrices of codes Cy» ci, Co
and cé be respectively Hj, Hf, Hp and H3.

From Figures L.13, 4.15 and 4.16, we know that the cyclic-component
product codes with parity-check matrices H;(X)H, and H{ (X H, can be
ex;coded by the same circtﬁt,‘ except that the second input of each mmlti-
plier a; or aj is different for the code with parity-check matrix H; X)H,
from that with Hj(X)H,. The values of a;'s or a;'s can be prestored in

two separate storage devices. The operating mode of the encoder depends
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on which output of the storage devices 1s taken. Or, alternatively,
Fig. 4.1k is used to generate‘ one sequence, say the aj's for the code
with check matrix Hl® Hy , and a linear combination of a;'s gives the
ai's for the -code with check matrix Hy ® H,, as shown in Fig. 4.27.

A detailed discussion of obtaining one recursive sequence from the

other can be found in the lite:n'a.ture.5

@ G @ Gy Qo |

® D> - r® ®
ar‘ arl-' * i ° aé a)- a'
3
{ (a, a > * ar, )
l J . ' l l
a, 3, a’ a,’, a,:

Fig. 4.27 A Circuit Generating Two Recursive Sequences

By examining the similarity between Fig. 4.15 and Fig. 4.16, we
know that it is possible to begin by implementing the encoder for the
cyclic-component product code with parity-check matrix Hl® H2 according
to Fig. 4.15. Then when the channel charactefistics change we switch
the inputs to, and talie outputs from, each encoder of the second component

code as shown in Fig. 4.16. In other words, we have the encoder changed

t0 & new mode a cyclic-component code with parity-check matrix H; @ Hp.
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From the above discussion we can conclude that a single encoder can
be used to encode four cyclic-component prodﬁct codes with pa.ritjr—check
matrices H1®H2, HJ'_®H2, H1®Hé and H]'_®Hé. The interchange of
first component code with its dual can be achieved by propefly selecting
the recursive sequence corresponding to H; or Hy. The choice of the
second component code and its dual is determined by the input and output
osition of each second component encoder.

4.10 Encoding of Cyclic-Component Product Codes Generated by G = Gy @ Gp
with Dual Component Codes

o é be the codes specified in the last section, and

their generator matrices be respectively Gy, Gy, Go and Go .

et Cy, Cy, C, and C
Examining the similarity between Fig. 4.22 and fig. 4.23, we know
that a single circuit can be the encoder of the cyclic-component product
codes with generator matrices Gy @ Gp, G; @GS, 6 @G, and G @G5
The change of modes is controlled by the input and output positions of
the first and second component codes.
By reasoning similar to that glven in the last section, the similarity
between Fig. 4.24 and Fig. 4.25 can also be employed to design a single
circuit with different modes, each of which corresponds to one cyclic-

component product code.

4,11 Encoding of 8 Dual Cyclic-Component Product Codes by a Single Encoder

Examining the similarity between Fig. 4.15 and Fig. L4.24, and that
between Fig. 4.16 and Fig. L4.25, we know that it is possible to encode
the cyclic-component product with parity-check matrix H = Hy ®H2 and
the cyclic-component product code with generator matrix G = G1 @ G, by

a single circuit, the change of mode being achieved by varying the input
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and output positions of both the first and second component codes. Also,
from the discussions of the last two sections, we conclude that all eight
cyclic-component product codes with duality relationship among either or
all of their component codes can be implemented by a single encoder with
switches used to change from one mode to the other.

A detailed example is given as follows.

Iet Cq be the (15,5) B-C-H 3-error-correcting code. The generator
polynomial g(x) is

g1(x) = (xh+x+l)(xh+x3+x2+x+l)(x2+x+l)

=XlO+X8+X5+X

L, .2

+x=+x+1

15
and hy(x) = ¥ Lo rx3+x+ 1l
le><5

The parity-check matrix is

|
QO OOCOoOH
eNeoNoNoNoNeoNol _NoRo]
QOOOOOHOOO
QOO0 OHOOOO
QOOOHOOOOO
QOO OOOOOO
OQOOHOOODOOOO
ol NoNoNoNoNoNoRo NG

J

OCO0OO0O0OOOKrO
OHOOFHKFROHKFMH
HOOKFKFROKFHFFO

OFKFHFHFOFROKH
HOHOORKOHKHLF

HOOOOOODOOO
FFRFHHEHOHOKFHKHO

[oNoNeoNe]

—
L

The generator matrix is

111011001010000
011101100101000
G1p =1/110101111000100
0110101111000110
110110010100001].
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Iet C{ be the dual of Cq, then C] is a (15, 10) 2-adjacent-error-correcting

code with generator polynomial

g1(x) =1hy(x) = X +x3+x+1

(X) = xlO + x8 + x5 + xh + x2 + x + 1.

1 ]
by

Then,

0

0

1

1l
0101001102111

lboocoocoocococo

cooocoocoH
coocooomMO
cooooMdOO
coooHOOO
cooMdooOOO
coHoooOO
oHooOOOOO
HO00O0O00O0O
[eNeoNeNoNeNoNeNol
HooHdHOHM
coHdHOMHMM
Add~HOHOA
HAAHOHOMAHO
Ho-HoOoHHO MM,

1010100000000
101000000000

- r
o

Let C5 be the (7,4) single-error-correcting cyclic Hamming code; 02'

Then

be its dual.

gz(x) =x3+x+1

he(x)=xl*+x2+x+l

O cood
~ -~ [eNeoNT Ne!
O oHdoO
O ~0 00
coH O
oHO O
~ 0o HO M

" i

o

oy S




e x®ex+l

]
»

g5(x)

+
i_.l

3+ x

b (x)

N3

I
lo o o+l
cor o
oM OO
HoOoO
OrH R K
e O
|= o=y

or K
O
ooHr

o+ O
|

- or!
e

The eight cyclic component product codes are listed as follows:

Code n-k Min. Distance Parity-Check Matrix Generator Matrix
PC, 30 3 H) QH,
H
PC, 40 L H, ® H,
PCq 15 3 H) ®H,
PC), 20 b H ®H,
PC; 85 o1 G, PG,
PC 90 28 G, @G
PC, 65 9 G{ @ Gp
PCg 75 12 61 ® 63

Table 4.1 8 Product Codes with Cyclic Component Codes

The overall length of each product code is nyn, = 105.

An encoder which possesses all these elght modes is shown in Fig. 4.28.
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5.

Fig. L4.28 An Encoder with Eight Operating Modes
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The timing for the switches and gates in the PC; and P05 modes is given below:

For the PC; Code

TATH o (7i44)T™ | (Ti4d)Tt o (T447)T7 | 1 = 0,1,2,...,14
X, 1 1
Gy — Gyo Closed Closed
G11 = G20 Open | Open
Go1 Open Closed
Goo Close Open
G25 —_— G31L Close Open
Kp —Ki1 1 1
G36 — Gys Open Closed
Kop —K3y 1 1

K3p 1s at position 1 for OT* —— 3977; Lor*— L6T";  LOT+ —53T7;
56T+t —60T"; 63Tt —6777;  TOrt—UTT; 77Tt —8177;  8urt —88r7;
917" — 9577 and 98T+ — 10277 K3p is at position 2 for the rest of the
time in a code word period.

G46——-G55 are closed most of the time and G56 - G65 are open most of the

time except quring the following intervals.

102T*— 105T" : G)g is open and Ggg is closed.
95T+ — 98I” : Gy is open and Gg7 is closed.
881" — 9177 : Gug is open and Gsg is closed.

girt — 84T” : @), is open and G., is closed.
L9 59

7MY — TTI” : Ggo is open and Ggg is closed.
67t — 70T : Gy is open and Ggy is closed.
+ -
60T — 63T : G5, is open and Ggp is closed.
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531" — 561" : Gs3 is open and Ggz is closed.
yert — yor~ Gs), is open and Gg), 1s closed,

397 — hoT” G5s 1s open and Ggg is closed.

For the PC5 Code

The following gates are open throughout the code word period:

Gg—Gpps  Gpz—Goy, G35 —Gys,  Gg —Ggse

The following gates are closed all the time

Goys Gops» Ggg - Ggo -
Kl is at position 1 all the time while K32 stays at position 2.

Gug — G0 are closed for OI* — 98T and open for 98TT — 105T .
G & Gps are closed only for 28T+ — 3277 .
Go & Gog are closed only for 21T+ — 2577 .
G3 & Gpp are closed only for 1yt — 187" .

G) & Gog are closed only for TIF — 11T~ .

G5 & Gog are closed only for ort — ur” .

Kj. +1 is at position 1 when G; is closed, and goes to position 2 when
Gy is open for i = 1,2,3,4, and 5.
Koo — Kog are at position 2 most of the time, except during the

following intervals:

Koo is at position 1 only for 28T+ — 3577,
K23 is at position 1 only for 21T" — 287".
Kp), is at position 1 only for iyt — 2177,
Kpg is at position 1 only for T+ — 147",

Kog is at position 1 only for OT" — TI7.

K32 is a position 2 all the time.
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It should be noted that the multipliers of Figs. 4.15, 4.16, L.2k
and 4.25 can be replaced by gates for the binary case. The gate-cgntrolling
signals can be taken from the outputs of the shift registers as shown
in Fig. 4.29. For the PC; code all the gates are closed, and the preset

sequence for the shifts registers is

(L010011011) = (a0, 89, 88y 87, 8gse--; ay).

/=

A
A

Fig. 4.29 Gates Controlling Signals

For the K's closed the polynomial is
x0 4 x9 + x8 + x6 +x2 4+ x° + 1,

the reciprocal of g;(x). For the K's open the polynomial is
x +x3+x+1= hy (x).

For the P05 code, all the gates are open, and the preset sequence for the

shift registers is

(l 00O 0) = (as, aj 33, as, al)'
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Other modes can be set up in a similar manner by proper assignment

of the switching operatioms.

4.12 Remarks

Sections k4.1 through 4.3 are a brief review of the encoding and
syndrome calculating circuits for the cyclic codes. Section b.h is
similar to Tang's work, but it is pointed out in this section:that
both the encoder and the syndrome calculator of a cyclic code can be
connected corresponding to either g(x) or h(x) whichever has the lower
degree. Fig. 4 "A general purpose decoder for dual codes" of reference
() 1s actually a syndrame calculator which can be a decoder only if the
codes under considerations are Hamming single-error-correcting cgdes.

Sections 4.5 through 4.1l are original. Let us exam:!.ne Table L.1:
The product codes PC; and PC3 have the same minimm distance but different
redundancy. It seems to imply that code PC3 is better than code PCy.

This is actually not so, because PCy is capable of locating 3 independent
corrupted subblocks containing 2 or fewer errors while PC3 can locate
only 2-adjacent erroneous subblocks containing 2 or fewer errors. A
similar argument applies to codes PCp and PCy. The variations of
minimm distance among codes PCs, PCg, PCy and PCg are much larger than
among the other 4 codes listed in Table L.l.

If we only intend to design an encoder for 4 cyclic-component product
codes whose generator matrices are given as Gl®G2,'GJ'_®G2; Gl®62' and
and G{(X)G3, then Figures 4.22 and 4.23 appear to be much simpler than
Figures 4.24 and L4.25, since the former require no buffers, no multipliers
and no restored sequences. But Figures 4.22 and 4.23 cannot be transformed
to encode product codes with parity-check matrix Hy(X)Hp by simply changing
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the input and output positions of the component codes.

If codes PC5;, PCg PC7 and PCg in Table 4,1 are respectively replaced
by their equivalent codes each with generator matrix HJ'_@)G2 » B} ®G3,
H1®G2 and H1®C}2', some saving in generating the gate controlling signals
may result

The high degree of flexibility in code redundancy is quite useful in
space-vehicle-to-ground communicetion, since the channel characteristics
are affected by several factors such as distance, vehicle velocity and
weather. It requires a coding scheme with variable error-correctability
at different times so that the transmission error probability may always
be kept within tolerance while the transmission rate is correspondingly
adjusted. Since the decoders are usually much more complicated, it is
conjectured that the vehicle will contaln only the transmitter and decoder
to provide one-way commnication.

Having presented the syndrome calculations, we shall discuss some

decoding schemes in the next chapter.
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CHAPTER 5
A NOTE ON DECODING SYSTEMATIC CYCLIC CODES

The first error-correction procedure for the binary Bose-Chaudhuri-
Hocquenghem codes was found by Peterson.32 The extension to the decoding
for non-binary codes was discovered by Gorenstein and Zierler.33 Recently,
some new decoding procedures and algoritims for the B-C-H codes have been
suggested by several other authors.15’16’17’18 Along another line,
Prange3° discovered the permutation decoding procedure for the systematic
cyclic codes in general. This scheme was carried on further by
MacWilliams.31

The procedure of cyclic permutation decoding is straightforward, and
the circuilt for implementing it is simple. Unfortunately, this decoding
scheme is capable of correcting only a part of all the correctable error
patterns of the code. While all the other decoding procedures mentioned
in the last paragraph are tedious and the circults complex, they are
designed to correct all the errors specified by the code capability.
Therefore, we suggest decoding a cyclic code mainly by the cyclic permutation
procedure, which can decode a large fraction of all the received vectors;
whenever the cyclic permutation fails, an auxiliary decoding scheme is
used to correct the remaining error patterns. In so doing, the total
decoding time will be significantly less than when employing any other
decoding scheme alone since most of the time the cyclic permutation
decoding procedure will be used and the auxiliary circuits will be idle.

In this chapter, the cyclic permutation decoding scheme is first

described. The circuit to implement such a scheme is then discussed.
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A detailed example of decoding the B-C-H (15,5) code employing cyclic
Permutation, and a simple auxiliary scheme are illustrated. It is
believed that the combined scheme for decoding the (15,5) code is the
simplest one of all the existing procedures. It is doubtful that such
simple auxiliary schemes will always be available to complement the

capability of the cyclic permutation decoding.

5.1 Cyclic Permutation Decoding of Systematic Cyclic Codes

The decoding procedure for cyclic codes, in general, involves many
difficult steps beyond syndrome calculation. In particular it involves
computations over the extension field GF(qm). The decoding scheme
suggested here makes full use of the cyclic property of a cyclic code.
With a straightforward division (i.e., syndrome calculation) this method
is capable of correcting any pattern of information: digits in a code
word. For a t-error-correcting (n,k) cyclic code, if the errors are so
distributed that there exist k consecutive error-free digits (k' digits
at the end of the code word and k-k' digits at the beginning of the code
word are also considered as k consecutive digits) then t or fewer errors
can be corrected.

It is well known that the parity check matrix H of an (n,k) systematic

cyclic code can be written as

H= [In-k Pl, (5.1)

where P is an (n-k) X k matrix. Let I , be the received vector, then

,r,=,f,+.e,, (502)
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where , £  is the correct code vector and ,e , is the error pattern. The

resulting syndrome is

18,=.r B = (£, +,¢e)0

L}

2 B+ e BT
:L_?_JHT . (5'3)
Since £, B = 0. (5.4)

If the error pattern is such that the last k places are all zero, i.e.,

L£J= (eo, el’ 82, cesy en_k_l, O 0, csey O)’ (505)

then T
By= e B = (eO) €1 oeey en-k-l)- (5.6)

Thus the syndrome exhibits the original error pattern. Now suppose
that [ e , is of the form

.e y = ( eo, el, sy Ei_l, OOOOO, seey 0, ei_l_k’ ei+k+l,-ooo, en_l)o (5.7)
\—X zeros —/

Let x, be the cyclic permutation matrix, then

(ao: 8]y e, a’n-l) N = (a'n-]_) 80, 81y e+-, %—3, an..g)- (5'8)
By the fact that the cyclic permutation of a code word is still a code
word, the syndrome of the received word after n-i-k shifts is

n-i-k _p
yon-i-k = .T, % =1,

nn-i-k HT

-i- -1-k
n-i-k 01k g

=

= (ei_'_k, ei+k+l, seey, Snd, €05 €15 o0y ei_l)
(5.9)
Thus the new syndrome exhibits the permuted error pattern.
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Therefore, whenever the received code word contains k or more consecutive
error-free digits there exists at least one syndrome of permutation which
exhibits exactly the erronerous digit positions.

Let ,e  contain e random errors with e < t. Then it can be shown

that the weight of the syndrome s = e, HY, denoted by W( WS, ), 1s

(a) Ww(,s,)=e
} (5.10)

or () W( _s,)=d-e,

either:

where d is the minimum weight of non-zero code words (d = 2t +1 for a
t-error-correcting code). To show the validity of (a) and (b), note that
e, -,s' is a code word*, where ,s' is the vector derived from s , by

adding k zeros to the right of (s, , i.e., if

‘5 |= (SO’ Sl, ceey sn_k_l), S' = (SO, Sl, 52, csey sn‘k"l, O, O’ ceoey O).

Hence

W(e,-.sY)sw( e, ,)+w( s")=w(l_e,)+u(_s,). (5.11)
But (e, + ,s' is a code word,
= =

w(,_e,-._s"'")=0o0rz=4d. (5.12)

I
*Here,ﬁ_',-_-ls,,,ol andHT=[P],Ls',HT=Ls,I+lO,P= S .
| e —

Mso,,e,HT=é,,[le,-—ls',]HT= 0,» e - 8! is a code word.
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From the above discussion and Equations (5.10), (5.11), we have

either (a) or (b) of Equation (5.10), where

(a) occurs if and only if the last k digits of  r
is free of error, and

(b) occurs if and only if at least one error occurs in
the last k digits.

The decoding procedure just described can be summarized in the following
3 steps.

(1) TFeed the received vector ,r , into the syndrome
calculator and count the wéight of the syndrome
W(,s,). IfW( _s,) st, we correct the

received vector to obtain a code word vector as

Ea= T, -8
where | s' has been descirbed in the previouw
pa.ragra;:ph. If w( s, )>t, go to Step (2).
(2) Feed the shifted vector _r, w into the syndrome
calculator. Then go through Step (1) for the
new syndrome P W :tcHT.

' i
If W( Si ) > t, tl'y- '_2_1 “c F) fOI‘ i = 2,3,..-,11-1,

successively. Stop the process whenever W( L_s;_l) < t.
The permuted error pattern is exhibited by 51,0 and
the corrections may be made.

This decoding scheme is capable of correcting any patterh of errors

less than n/k, since if e < n/k, there exists at least one run of k

consecutive error-free digits in ‘bhe received vector ,r, .



(3) For the range of e, t 2 e 2 % » We require that
there exists at least one run of consecutive k
error-free diglts in the received code word.
Otherwise, some auxiliary means should be used
in order to correct all the error patterns with
t or less errors.
A further thought on Step (2) will help a great deal in simplifying
the circuit. ILet r(x) be the corresponding polynomial of degree n-1
to the received vector  r .
Then r(x) xi(mod x®-1) is the corresponding polynomial for uILlﬂi .
And let g(x) of degree n-k be the generator polynomial of the systematic

code. The syndrome s(x) is given as

r(x) = q (x) g(x) + s(x), moa(x™-1),
where degree s(x) < n-k
and r(x) x* = q () g(x) x1 + s(x) x*, moa(x™-1)
= gy(x) g(x) + qB(X) a(x) + s1(x), mod(x"-1),
where ap(x) = x1q; (x)
and s(x) xt = az(x) a(x) + s, (x), mod(x"-1)

with degree s1(x) < n-k .

It is clear that si(x) is the syndrome for r(x) x} ana s1(x) 1s also

the remainder after dividing s(x) x1 by g(x). In other words, s1(x) can
be obtained by shifting s(x) i times in a divider connected according to
g(x) with 's(x) as remainder in the shift registers. Hence the decoding

procedure can be revised as follows:
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(1) Feed the received vectér T, into the syndrome
calculator connected according to g(x) and count
the weight of the syndrome W( s, ). If

” W( ,s, ) <€ t, we correct the received vector to

obtain a code word vector as

|f1=Lr1".5'|'

IfW( s,)>t, go to Step (2).

(2) Discomnect the input and shift the remainder s
in the shift-registers. And for each shift we
count the weight of the shifted new syndrome.
St0p the shifting whenever W( &) < t. The

correct code word is then given by

84 0 xi.
- c

(3) Call for an auxiliary decoding scheme if

W( sy )>t fori=1,2,...,n0.

5.2 Decoding of the Binary 3-Error-Correcting (15,5) B-C-H Code

The binary 3-error-correcting (15,5) B-C-E code contains 22 = 32
code words, and has a minimm distance of 7. Hence it is capable of
correcting any error pattern consisting of 3 or fewer random errors.
detailed decoding procedure of such a code is given as follows: Ilet
the generator polynomial of the (15,5) code be

g(x) = (xl"+x+l ) (x)*+x3+x2+x+l ) (x24x+1)

= xlo+x8+x5 +xh+x2+x+l.
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The parity-check matrix H and the
(1000
0100
0010
0001
H={0000
0000
0000
0000
0000
0000
and
1110
0111
G=|1101
0110
1101
Since xh+x3+x2+x+l is a factor of

parity-check matrix H of Equation

following matrix H' corresponding

Hl

]

R eXeN
OCOoOrO
Or OO
HOOO
e el
coow
ocor o
oOrH OO

The decoding procedure can now be

(1)

as shown in Fig. 5.

generator matrix G are then
0000002120101
00000011111
00000011010
00000001101
10000010011
01000011100
00100001110
00010000111
00001010110
00000101011
1100101000 0]
01100101000
011110001100
10111100010
10010100001].

g(x), any code word satisfying the

(5.20) should also satisfy the

to xu+x3+x2+x+l.

HOOO
HHE e
coop
OOHrHO
O OO
HOOO
FoE e

listed as follows.

Feed the received vector into the syndrome calculator

1. If the weight indicator shows

that the weight, i.e., the total number of 1's of the

syndrome is zero, then there is no error in the received

vector.

no error in the first k = 5 information digits.

If the weight shown is no more than 3, there is

Thus

the errors are in the check digits and no correction is

required.
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Weisht Indicator

Fig. 5.1 Syndrome Calculator

(2) If the weight of the syndrome is greater than 3,
there is at least one error in the first k = 5
information digits. Allow the syndrome to shift
by itself with no further input until at the 1R
shift the weight indicator shows a welght of 3
or less. Then take this shifted "syndrome",

' 0 .
denotedby‘si ,andfomlelaLSiO O()OJ

The true error pattern can be obta.ined by shifting
e! backward 1 times.

(3) If the weight of each of the 15 shifted "syndromes"
is greater than three, we know there are exactly
three errors, evenly spaced. Then we feed the
received code vector into the auxiliary "subsyndrome"

calculstor shown in Fig. 5.2 whose parity-check matrix
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is given by Equation (5.22).

Input

X
\ l {f Y
Etror  Pattern Indicator‘

Fig. 5.2 The Auxiliary Subsyndrome Calculator

The error pattern indicator "transforms" the
subsyndromes into the error patterns in the

following manner:

(1000) = (10000 10000 10000)
(0100) 2 (01000 01000 01000)
(0010) = (00100 00100 00100)
(0001) = (00010 00010 00010)

(1111) > (00001 00001 00001).

The following examples will help to clariy the decoding procedure.
Example 1
Let (1, =(0110100000100O0O0) be the received vector.
Then the syndrome , s, is
8,=,r B =(1L000010010).
The weight of the syndrome

wiis ] =3.
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Hence the information digits (10000) are correct. No correction is required.

Example 2
r|=(011001100101100)

,8,=,r,f=(1100011110)
wl,s,] =6>3.

Hence we should shift the syndrome in the syndrome calculator as shown

in Fig. 5.3.

Iarut )
e
=
weight
1 1 0 0 0 1 1 1 1 o} 6
1st shift O 1 1 o] 0 0 1 1 1 1

2nd shift 1 1 0 1 1 1 0 1l 0 1

6 .
T
3rd shift 1 0 0 0 0 0 1 0 0 o [2]

Fig. 5.3 Cyclic Shifts of a Syndrome

Therefore,
83 =(L000001000), since W[ s3]=2<3
and ,e',=(1000001oooooooo)
. _J
%5
L3

,e,=3ba.ckward shifts of  e',

=(000100000000100).

_133..




Hence the correct code word | T ,is

lf|=Lr|+l§u

=(01110110010160600).

Example 3

r,=(111101101000000)
5,=,r E =(1111011010)

Wl s,] =7>3.

The weight of each of the 15 shifts of the syndrome is greater than 3.

Hence, upon trying LSy =, ,H' = (001 0), we know the error pattern

should be
,e,=(001000010000100)

= rl+|e,=(llOlOllllOOOlOO).

5.3 Remarks

The cyclic permutation decoding procedure is particularly suitable
for high-redundancy short cyclic codes and for B-C-H codes generated by
non-primitive elements. The following table shows the number of random
errors correctable by the permutation decoding scheme, e., and the code

error-correctability, t, of some of this class of binary Bose-Chaudhuri-

Hocquenghem codes.

:l_ k t €. t-e,
2l 12 2 1 1
6 3 3 0
L L L 0
23 12 3 1 2
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t-ec

25

13

33

35

15

39

15

43

29
23

45

10

ok

%7

k9

10

10

35

51

19
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25

36
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55

13
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37

28

19

10
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MacWillisms3' also has suggested the following permitation transform

U: 1 "’Qi fori = 1,2,...,!1-1,

where1istheposition1ndexoftheéanponentaiofacodeword

(a0, a1, "' : 8y, ooy 8n.-1) over GF(q).

With this permutation, some of the cyclic codes &re capable of correcting
_ all the correctable error patterns. But the implementation of such a
pemtaticn is not simple and for each U-transform of the recelved
sequence it is required to repeat the three decoding steps mentioned in
Section 5.1. Therefore, we suggest combining the technique described in
Section 5.1 with other'decoding‘schgmes rather than going through the
U-transform.

The cyclic permutation combined with the U-transform fails to
decode completely the binary 3-error-correcting (15,5) B-C-H code as
described in Section 5.2.

In certain applications, it may be desirable to have an extremely
simply decoding procedure which corrects a major fraction of theorg’;:!cally
correctable error patterns and sounds an alarm whenever the error pattern -
falls mrbs}de of that major fraction. The pernutation decoding procedure
is particularly sultable for such an a.pplica:l-;ions. Take an'error-l_oca;tin'g
code for example. If we take the binary 5-error-correcting B-C-H (31,11)
code as the first component code, theli permutation decoding 1s capable
of correcting two errors which corresponds to two subblocks in the -erYor-
locatigg code. Themfore , 1f there are two or fewer subblocks in error,
we locate them and either consider such errors as tolerable or ask for

]

retransﬁission of these two subblocks only.
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If there are more than two corrupted subblocks, we may not be able to locate
erroneous subblocks by the permutation method and in this case we ask for
retransmission of the entire code block regardless of whether we may be
able to locate the erroneous subblocks by other methods.

In general, it can be shown that a t-error-correcting code with
minimum distance d > 2t is capable of correcting errors of magnitude
e, < t and simultaneously detect errors of magnitude less than or
equal to d-e,-1 > t. Hence, a t-error-correcting code with minimum

distance d = 2t + 1 can perform one of the following functions:

(1) detecting 2t errors;

e
(2) correcting e, ( 9-}'{—]') errors and simultaneously
detecting 21:.-ec errors;

(3) correcting t errors.
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CHAPTER 6
MISCELLANEOUS RESULTS AND CONCLUSIONS
In this chapter the results of Chapter 2 are used to find the
minimum distance of the product code specified by H = Hy (X)H,. Suitsble

channels for employing product codes are discussed. Conclusions and

recommendations for future research are presented.

6.1 Minimum Distances of Product Codes

It has been shown® that the #inimm distance of a product code
generated by G = Gy X)Gp 1s the product of the minimum distances of
its component codes. We now proceed to find the minimum distance for
the product code specified by H = Hy(X)H,. The following lemma is

useful in determining the minimm distance for such a: product code.

Lemma 6.1
let V be & subspace of the space conteining all
n-tuples over GF(q). Let V be the complementary
space of V, i.e., V(®V = whole space of n-tuples
over GF(g). Also let ve V, ¥ € V, and both v _
and ¥ be non-zero vectors. Then dlv, ¥] 2 1,
where d{v, ¥] denotes the distance between

v and V.

*See Reference 2, Chapter 5, Theorem 5.3.
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Proof
Suppose d{v, ¥] = 0, then v = ¥ € VNV = 0, by the
definition of the direct sum. This is contradictory
to the assumption that v # O and V # O, therefore,

~ we :con¢lude that dlv, ¥] = 1. Q.E.D.

Theorem 6.1
The minimum distance, d, of a product code specified
by H = H) @ H, 1s given by d = minl4;, d5], where
d] ts the minimum distance of the first component
code and d, the minimum distance of the second

component code.
Proof

By Theorem 2.6, the generator matrix of the product

code is given by

G, X6,
G =16 ®06;
6, X% |,
which can be transformed by elementary row operations

into the following form:

@@ | .
Without loss of generality, let us assume
Gp = [PiT ],
then it can be easily shown that one can choose
the complementary space of G, as row space of
Gy = [Ip,x, 0)-
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i
Iet go be any code word of the second component
code. Then the code word generated by the generator

matrix Inl®(}2 is of the form

The minimm distance ofsuchco\devordisd?am‘bhe
minimum weight of each subblock is either O or d,.
let |_Tg_'be a code word generated by the generator
matrix '(3‘2. . Then the code word generated by the

generator matrix G; X)Gp is

811 8, slz‘ggj,-f-',_glgl\gg,l,

vhere (g7, 812"""311:1) is a code word of the

first component code. The minimm distance of

the code words generated by Gl®32 18 33X 1 = d;.
Hence the minimum distaﬁce d of the code word genéra.t‘ed
by G 1s d 2 minla), 4,).

We now need. to shbw that a linear combination of codé
words from I, (X6, and from G; X)G, has a weight
greater than min{d,, d,]. This is true, since the
combined code word is of the form

1 = 2 o . —
a g, +b_gll;%,ag2 +b3125’,...,ag2 "'bglnlgg:

[ 1

vhere a and b are non-zero field elements.
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For each g4 0:

w = W[aléai + 1834 lgi’]
= Wla; .3_2_1_,]
=Wl gt 1.
When g,; # O, we have the following 2 cases:

(1) w[lg_ai’]ao

wﬂw[éa—’

1 2 1, since Wl 5‘2_1] # 0.
(2) Wl gt 140
wamnal gl , 8121,
by Lemma 6.1.
There are at least dy 3].1'5 which are not zero,
hence the mininnm distance is laréer than dl.
Therefore,
d = minla,, a,]. Q.E.D.
Even though the minimum distance of a product code specified by H = H1®H2
is equal to the smaller minimum distance of its two component codes, the
error-control capebility of the product code is far superior to that of
its component codes. Therefore, the minimum distance of a code 1s not

always a good criterion in itself for judging the code capability.

6.2 Suitable Channels for Employing Product Codes

In general, a product code 1s suitable for a certain communication

channel whenever its component codes are the broger codes for this

RPN




particular channel. The reason for choosing product codes in such a
chennel is that we can have more varieties of code lengths and error
control capabilities at our command.

The product codes generated by G = G;(®Go are particularly suit-
able for the channels where random errors and burst errors may occu.r‘
similtaneously, while the product codes specified by H = Hy ()H, and
A = (H;q(® Hpqlp are appropriate for the chamels where errors tend
to cluster in subblocks. For the channels with multi-zone detectiom,
the error-locating codes whose parity-check matrices are given by
H = 8 (QE, or B = (B ®Hy,], are particularly sultsble for error-
control. The multi-zone detection scheme indicates the possible
erroneous digits throughout the entire code word block, while the error-
locating decoder will locate the subblocks containing errors. "~ Hence
those digits indicated as erroneous by the former scheme which lie in
the subblocks located by the latter technique are the highly questionable
digits. In this way we may narrow the erroneous "area" from a whole

subblock to several digits.

6.3 Concluding Remarks

The techniques of finding the mull space of the tensor product
space are developed in Chapter 2. This algebraic approach yields the
results which are expressed as much as possible in terms of the mll
spaces of the original "component” spaces or their bases. This results
in better insight of the product code structure and the structure of
its mull space. It also enables us to perform further research in

determining the properties of product codes, such as weight distribution,
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Possibility of being comma free, etc. The investigation of the decom-
posibility of a code into two component codes whose tensor product gives
fhe original code, relies heavily on the understahding of the null space
of & tensor product space.

The decomposition of the encoding and decoding procedures of a
product code into those of its component codes, and the capabilities
of product codes, are discussed in Chapter 3. It is also shown in
this chapter tha.t the implementation of a product code can be achieved
by a simple logic combination of those of its component codes. All the
discu_ssions in Chapter 3 are kept as general as possible and are applicable
to any product code with linear component éodes.

In Cha.pt;er 4, the product codes with cyclic component codes are
discussed. -Since cyclic codes can be most eimply implemented, the
encoder and syndrome calculator of a cyclic code can be easily converted
to those of its dual code by switching, the implementa.tioxi of a product
code with cyclic component codes is simpler than that of other product
codes. The encoder and syndrome calculator of such a product code
provide eight operating modes, thus providing a highly flexible communicea-
tion system.

A simple decoding scheme for the systematic cyclic code » namely
permutation decoding » 18 discussed in Chapter 5. This simple scheme is
capable of correcting a large fraction of the correctable errors of the
code. It is suggested that an auxiliary decoding scheme be used whenever
Permutation decoding fails tq correct errors. A simple and straightforward

method of decoding the binary (15,5) B-C-H code is illustrated as an

example.
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In the last chapter, the minimm distances of product codes and

suitable channels for employing the product codes are discussed. An

important result obtained from consideration of the minimm distances

of product codes is that the minimm distance alone is not alms a

good criterion for judging the code capability.

6.4 Recommended Further Research
The 'follodng are a direct extension and promising areas for

further research concerning product codes:

(1)

(11)

(111)

(iv)

(v)

Polynomial description of product codes with
cyclic component codes. Some of the vbrk has
been done by Y‘fzill% and Burton a.mivIrlefl.ra.cvn27 s
but extension of their work is necessa.fy in
order to have a better understanding of product
codes. - |

Calculation of probabilities of error in data
tiansmission of tensor product codes under
various rates of transmission.

Calculation of the weight distribution of product
codes and determinstiop of its relation to those
of the component codes.

Study of the code or codes which can be iteratgd
in a product manner indefinitely with a nom-zero
data transmission rate.

Searching for different ways of combining two or

more codes to form new codes.
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APPENDIX

THE DETERMINATION OF NULL SPACE OF A TENSOR PRODUCT
SPACE INVOLVING THE TRANSLATION OF FIELDS
The preliminary lemmas and theorems lead to Theorem 2.7 of Chapter 2
are given in this appendix. The results are extended somewhat beyond
the case that the second component code is cyclic.
Let r(x) be a monic primitive irreducible polynomial of degree £
over GF(q), where q = p?, and let pt, for 1 = 0,1,2,...,9-1, be non-zero

elements of GF(q). The p~-ary representations of the ﬁi's are given as

[oNeN

so] =

, ﬁl} = TOBO] , BE] = Toﬂl] = TOQB°]

Qe o o

eer, pl = Toiso]_,... (A-1)

and

Bk+i} ) Toiak] _ Tokﬁi]
for all k and 1 mod(pf-1). ' (a-2)
T, has the similar property if the p-ary representations of Bi's are

glven as row vectors ,Ei \'s.

A matrix Ay with elements in GF(p) is said to be a p-ary representa-
tion of a matrix Aq with elements in GF(q), q = pt, if Ap is obtained
from Aq by expressing each of its elements as a column vector with £

p-axy components.
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Let D and Dy be the p-ary representations of D, and

BiDq respectively,‘where Bi is a non-zero element of

GF(q), ¢ = pf. Then

Dl')EPT=0forallEpsuchthat

DpSp” = O-

Proof

Iet _

(118 L) (byp B 2) .. (byp 12)
(bpyB ) (bpp B 22)
q = . . . (A’3)

* - L

| EmB™) (b B72) ool (opp )|
where p*J1s are the non-zero elements of GF(q),
and by = B or 0. Then

Ybnﬁall”i) @ lzﬁa12+i) e (b lnﬁalmif
(bglﬂael+i) (v 225822+i) eee (b mpa'&‘l-l-i)

g - : : (at)

ébhlﬁahl"-i) (bhzaahz"l'i ) ces. (bhnpahn'l'i )-
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The p-ary representations of matrices (A-3) and (A-L4) are

a8
11
by,P

.
1
BB 2 ]

.

a
byof 12

1
b2 26822—

1

oo .bln.Ba':LrlT
-
... b2n5a2n_

(a-5)

*To is the companion matrix of the primitive polynomial which generates

the fields containing Bi's.

The matrix Tg is given in Equation (2.2f).
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or

Dy = . . . ; (a-6)

Purtheimore,
.Toi[gélgajl] b325a32] een bjngajnI] EPT 0

fOI‘ ,j = 1’2,3’th:ht

Consequently, we nave

D;E‘.F ' = 0. QeEsDs

In coding terminology, we say that if a gp matrix D.p is the p-ary
representation of fi»iDq over GF(q), where Bi is any non-zero element of

GF(q) end q = p’q' , then the code space D; is Invariant under.the changing

of the element 61.
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Theorem A-1

Let D and Dy be gp matrices over GF(q), q = pt, of
sizes h; X n) and hp X np respectively. Iet Doy be
the p-ary representation of ng, and let the row spaces
of Ep, be the mull space of Dpp, i.e., DopEopl = 0.

If Dy is the p-ery representation of Dg = D1q & Dpg,
then the row space of In1<:)E2P over GF(p) is a

subspace of the null space of the matrix Dp.

Proof
By hypothesis
D2PE2PT = O. (A'?)
We need only to show
D (I,. ®E,)T = 0.
PRy 2p
But

Dg = D1q ®Doq

80100q  8ppDpg ¢+ 8onDpg
= . 3 . (A"8 )

. . *

La'h]_lDEq_ 8py2Dq o - ahln]_DZq_

where the aij's are elements of GF(q).
From Equation (A-8), we can visualize that D, contains
h] X njy submatrices. Each of them is elther a p-ary

representation of aj 3Dop or a O-matrix. Let Dijp =
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p-ary representation of ay jDEq’ which 1s a zero matrix
if and only if a3y = 0O, since we assume qu is not a
zero matrix. Hence,

r— —

Dllp Dl2p o« D]_nl-p

D2ip Dogp +e+ Dopyp
ng_- . . . (A'9)

_Dhllp Dpyop -+ Dh]_nlp_i

511 cEopT DyppopT e DlnlpEQPT‘
Dorpfop’  DoopFop” +++ Don pFop”

-

_?hllpEa’pT Dy apFop Dh1n1PE2pT_J

o,
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since, by Lemma A-1l

T -

for i

l,a)ooo,hl

J= 1,2,e00,n7 & Q+E.D.

Theorem A-2

Let D1q and Dpg be the gp matrices over GF(q), q = pt,
of sizes hy X ny and h2 X n, respectively. Let

Dyp = [qu_]p = the p-ary representation of D1 g

sz = [Deq]p’ and the row space of Elp is the null

space of Dlp’ i.e., DlpElpT = 0. Then the row spaces

of Elp® In2 is a subspace of the null space of
D, = [0, @Dyl

Proof

Let

Define [A1 j]rS as the h, X n, matrix with only one

q

| ®ny1 ®ni2

by byp

boy bpop

Pns1 P2

-152-

e ahlnl_

LN 3 b T
1np

oo b2n2

t L]

s0 0 bh2n2

2
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non-zero element a

15°

of the r'® row and sth column, e.g.

positioned at the intersection

[0 00 0 0...0]
0 00 0% 0
[A36}2h= c o . . Fha rows
0600 0.0
= ne‘cGlumns ’
Then
laylyy  Dagalyy ool by
by mpy Ay sy LAl eeelbon gy
Dlq @ Doq =Z 3P - : :
| {5 _[Ahlilij [y, 31, 5 "'[Ahlnllij_

Note that the #ow space of

pr——

bij

is exactly the same as the row space of

(a0 [a5)5 .- [Alnl]ij

[1.52111‘,j [A22]1j ..

[Ahll]ij [Ahlalij [Ahlnl]ii P

(Al -
Uy lyy  Ugglyy -

_]_53_

ces [A.hlnl]ki P

. [‘.*Enlli 3

ey

. [Alnl]kj
. [f‘anl]kj

{a-12"

(a-13)



Hence,

n2

row space of [qu® D2 q]; row space ofz

[ (anlyy [agpdyy «oe Lagy lyy |
[aydyy Tagplyy vee Lany i

. . .

R PR NP PRI TN Y

(A-1L4)

since at least there is one non-zero element in each

column of qu.

Define ,1i,as the 1% row vector of I, . It is evident that

. . .

. » .

((a)55 Taplyy - [agy gy
oy dy;  [agolyy -oe DAy i

an 1)y (applyy «oo DAy lyy

since the first matrix has non-zero elements only in

column j, 2j,...,n23, while the jth, 2,jth, and nejth

columns of Elp®l i;are all

n2
— —T
Elp®, i =o0 (A-15)

p-— o]

if 1 # 3,
zeros. For i = jJ
N . 1T

[Elp®u]_4]

. .

= [Dlp][ELp]T = 0,
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Therefore,
T
(D1 Doglp [E1,R L] = 0 for 1 = 1,2,...,n5

which implies

[21q® Dagly [Elp®1n2]T =0 (a-17)

In other words, }E‘.lp@I!LE generates a subspace
contained in the nmull space of [qu® Daqlp. Q-E.D.

The results of Theorems A-1 and A-2 can be combined in the following
theorem.
Theorem A-

Let Dip and sz be the p-ary representations of the gp
matrices D)4 and Dpq of g-ary codes C; and C, respectively
with g = pf. The sizes of Dy, and Dy are hy X ny and hy X n,
respectively. If the mull space of row space Dip is
specified by Elp and that of sz by E2p’ then the row
space of

Ep @I,

In, @By

is a subspace of the null space of D, = [D1q®D2q]p-
It can be easily shown that

rank[D,] < fhyh, . (a-18)

Hence the dimension of the null space of Dp 2 myny - fhih,. But from
Theorem 2.6 and Corollary 2.6.1 we know that

Ej. ®I
rank [Inz®E?.12>] = nyn, - (!.hl)(l.h2) = nns - L2hlh2 . (A-19)
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Therefore, the row space of

o]
In, O
is a subspace of the mull space of Dp

So far, no systematic method of evaluating the matrix whose row space

is the complete null space of D = [D D,.).. has been developed.
1q\~"2q°p

Fortunately, the most useful codes whose gp matrices are the p-ary
representations of the tensor products of tw:o q-ary gp matrices are the
codes with cyclic g-ary component codes. A cyclic pY-ary code with s rows
in its gp matrix is identical to a cyclic code of the same length with a
one-rowed p"-a.ry gp matrix, L = rs, by suitably expreésing elements in
the pl'-a.ry field in terms of vectors with components in the pT-ary field.
The following lemma and theorems are developed for the tensor product of

cyelic component codes.,

Lemma A-2
Let r(x) = rg + T1X + rox® + «vo + 1y 13071 4+ xb be
a primitive irreducible polynomial over GF(p). ILet

T, be its companion matrix, then the following mapping

M: GF(pt) -»F(a)

is a homomorphism, where F(A) contains all £ X £

square matrices over GF(p).
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Proof
We define mapping S as

S: GF(pf) - p-ary representation

s(0) =

e« OO

—
O

-t

el - Bi] .
It is evident that S is an isomorphism. But

Bi] =Ty o

<B:LBJ>] _ Bi«&-,j} ] T01+3Bo] ) T§T§B°]
]

0
0

o
L =0“£B]-

| 0]
Define U such that U (31]> = T,l, then M = US which is

a homomorphism. Q.E.D.
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Theorem A-U4

Let_ qu and Elq be the gp and pg matrices of a g-ary

code, where q = p! and the sizes of D1g and Elq be

h X n and s X n respectively, h + s = n. Then
[qu®[a°pl... a”'lllp [Equ®[BOBl... B*"‘l]]p -0

vhere Bl is & primitive element of GF(q).
Proof

Let "~ a a 8y ]
b,,B 11 b, B 12 .. b, B 1n
bpB 2l by 2R ... by TR
qu = B-l . . .

b, 870l b p°h2 ... b pn

where by; is either O or B°, and let

my3 myo n
t11P t1oB ees tinP

taleQl tzzﬁmez coe taleQn
=11 . . .

Ejq = B

moq m m
L_tslB & ts2ﬁ 52 ... tsn'3 sl

where tij is either O or BO. By hypothesis, we have

. -2
D1gE1q" = O, equivalently, B Dy T = 0,

qu
which implies

b11ty18 1B 9L 4 bystyeB LB 92 4 e 4 bintinh 0 9
for 1 = 1,2,04s,h, and J = 1,2,...,8.

-158-

n

(a-20)

(A-21)

=0 (A-22)




By Lemma A-2, Equation (A-22) is equivalent to

m m. : m
biltJlToailTo Jl + b12t32T°a12To *]2 + cee + bintjnToainro Jn = 0.

Writing this in matrix form, we have

- .

m2

b1 T2l byr °22 ... b, %20 g m

oee tsaTo

: : . . S LS

. . . .

bpTo B bysTo B2 ... by, T, BB :,h'romln cee g Ty B2

Now
1
TO = [B Ba B3,‘ ",B‘]p

= 1" 84,800,

Therefore, the first matrix of Equation (2.53) is just

the p-ary representation of D, (8° B',...,64"2], ana
the second matrix is the p-ary representation of

Eg ®16° t,... 8410 Q.E.D.

It can be easily deduced that, for any i1 and J
[qu®[61 pitl ﬁ1+2,m,ai+z-1llp [Equ®[5j B‘j)'l,..-,ﬂ'j*z'l]]P -0 (a-2k)

provided Dy By T = 0. But the fom (e° g%,...,8%°11, which corresponds

toi=]J =0, is the simplest one, since

[ﬁo ﬁl,-.o,ﬁz-l]p = IZ .
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It should be noted that the null space of [qu® [BO Bl goee ,B!' 'l]} is the

row space of

_‘30 _—]l

Elq() '

D

where the notation [ ] P, is the matrix with each element in the bracket

expressed as a row vector over GF(p).

Thoerem A-5 (identical to Theorem 2.7)

Iet qu and Elq be the respectively gp and pg
matrices of a q-ary code C; of length n;, where
q =pt. If Doy 1s & 1 X np pg matrix of a cyclic
g-ary code Cp with n, 2 £ and if, with suitable

mapping, qu is of the form
l
0.1 .2 -1, 1p ig41 1n,-1
[B B B ,... B B B ,eee,B 2 ]

where Bl is a primitive element of GF(q); also, if
the row space of Eop is the null space of [:qulp ,

then the null space of [qu® D2q]p is
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where Opgy 1is introduced for the sake of compensating

the length of each submatrices in the following manner

—

e R T
;o 5,

515 ; Ocom = E E 0“(112_‘)
bl | lpi#tl, |

s <2, (1 -k -

provided rank Dyo = by, rank[qu®D2q]p = by,

rankDgpal,andra.nkEap-nz-z-
Proof

By Theorem A-1, we know the row space of [In]_@EZp]

1s contained in the mill space of [D);(ODygl,. And

- i T
a0 1
P |
pl |
{
(D1 @ Doqlp| {E1a® : |
| oy eod
-
L2t
Il e,
- _ - "WIT
B |
0 sl L l: ﬁl :
= D]_q_-@[ﬂ B yees P - |O]x(n2_z)] Elq_® : | Och
! LB L
Lol 1.
g 1

by Theorem A-k.
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Hence,

3 In1®E2P ]
[~ ~ a0 | N
B T
1 |
B i ‘
E=| [Eq®|- | Ocom (A-25)
. |
£2-1
LA
L “lp.
is indeed contained in the null space of the row
space of [qu®D2q]p . It remains to show that
Rank E = nyny, - th. Now,
Rank Inl®E2P = Ny Rank E2P = nl(n2 N Ll) = hs - Lnl (A‘26)
e ’ ——1
- r ' =+
B° ] 8%
! |
gt : pl |
I
Rank E.]_q,@ : : Ocom = (Rank Elq>4Ra.nk I Ocom >
1 ]
2-1 ) “g-1 !
Bl o
N T WP L N
bt . -
= (nl - hl)‘g = Lnl - tho (A'27)
We need only to show
Rank E = nqns - fhy - (a-28)
Gijren
I
0 1y dg4a 1
De’pﬂ tDeq]P B[Bp Bl,coo’az l’ 6 L s z ,..Q,B naL
(1, P, (A-29)

-162-




then

Epp = [PT 1,,2_,] (A-30)
-[-P'_I' Inz_,,] 0 0 0 ]
0 [-PT I.na_,,]
0 0
L ®kp=| . . - (a-31)
i o 0 | [-PT Ine—!,]

Now
i | I [E10] (B 1 |
_ u 11 [E12 soe [Eppy
ﬂl .' [Eal] [F22] e [Eanl]
i
Be®|. o] =1 - : : (a-32)
‘...l l - . .
i L ' .2, :E(nl"hl)nl] [E(nl-hl)éll [E(nl-h‘l)hl_]_ )

Any non-zero [Eq4] 1s of the form

a4 ]
.84,
5“134-1

1)
O(ny-2) | = T, [1‘ oz(na_‘)] . (a-33)

-Ba:l,jﬂ,-l
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Since T, is the companion matrix, it defines a linear

mapping, hence the rank of [IL Oﬂ(n _z)] is invariant
2

under such & transformation. Therefore,

row space of Tcaij [Iz Ol(qg_z)] = row space of [Iz Ol(ne-l)] . (A—3h)

Hence, . .
- I -P
n-t Tnp-4

81 =
rank |T,"+J [Iz Oz(nE-Z)] = rank Iz Oz(nz-z)

0 I, .
ny 4
= rank by elementary row operations
I, O
2 L(ne-z)
= rank Ing_z + rank Iy = ny-4+L = n,. (A-35)

This shows that none of the rows of I (X)Ep, can

be obtalned frqg

~0
p |
|
Bl i
|
Bla®|* | %oy
|
cpo1 |
pt™t
L - [0
and vice versa; hence, — -
-6 ey
B '
t
gt
_ |
Rank E = Rank [Inl®E2p] + Rank |Ey (¥ ' O
. i
5-
Bttt ]
- - %
= nln2 - Lnl + .Cnl - th = nln2 - th QoEtD-
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The technique described in this section is valid only when the
gp matrix of the second component code is a 1 X np matrix in GF(q)
containing a submatrix Bi[° B1,...,8¢"1]. In Theorem 2.11, the
cubmatrix is put at the left end of the gp matrix Dgé. Actually,
the submatrix B(B° B,...,84"1] can be put any place, if Dpq 1s
of the form

) 1
% B',... 80t g plers ple+srl [ g n2] ,

Doq = [Bil 512: cee ,513

- -t

since the null space of [qu® qu].p is

In, @ Egp
[ - . B° ' -]
! )
o
E1q®%om;, 1 - 1 Ocom,
. ]
: ‘L l
- ]
L v BT e,

where chl and 00042 compensate the submatrix in the following manner

T v,y
P Bl AN

" | ooax : . Eocom - °zxa; . ; Opx(a -12)
HEPL S ! §'1+z-1 }

| By 1

For the case that the second component code is cyclic, it is

alweys possible to choose a proper extension field such that
0 _1 2
Dog = [8” B 8°,0..,872.
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The null space of the product space can then be determined.
: irp0 al 2-1
If there is no submatrix in Dog which is of the fomm B [B, B, ,B7],
then it is necessary to find a permutation matrix = such that
}

1 1
b gt ... ,B n2] .

o 1 4-1
D2q_ =[B B :"':ﬁ :

By Theorem 2.1l,.the null space of [qu® (ngﬂ):\p is

In, ® (Egp %) N

[ ]
EIREE

)

Bl |

E1q® | . i Ocom
. )
. |
Ll

L= — '—-P—; *

It can be easily shown that the null space of [qu® D2q_L is

I, ®Eop
SO
gl 8 O
Elq ®|. i OCOM
. ! .
i g4l | i O
N — 1 Py | E;. .

ny n's

If the gp matrix D2q_ contains more than one row, we first find the

null space Ey of the product space [qu@) Di Q:\'p , Where D;_q_ is the
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submatrix contains itP row of Doq+ The entire mull space Ep of [qu® sz:L

can be expressed as

row space of Ej = m row space of E,, (A-36)
all 1
where m denotes intersection. To evaluate the null space Ep by
determining the intersection of the row spaces of Ej's is a very tedious
procedure. Therefore, when Deq contains more than one row, the direct
method discussed in Section 2.1 1s recommended to calculate the pg matrix

Ep when the gp matrix is given as a tensor product of [qu® qu]p .
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